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Viral products and ideas are intuitively understood to grow through a person-to-person diffusion process
analogous to the spread of an infectious disease; however, until recently it has been prohibitively difficult

to directly observe purportedly viral events, and thus to rigorously quantify or characterize their structural
properties. Here we propose a formal measure of what we label “structural virality” that interpolates between
two conceptual extremes: content that gains its popularity through a single, large broadcast and that which
grows through multiple generations with any one individual directly responsible for only a fraction of the total
adoption. We use this notion of structural virality to analyze a unique data set of a billion diffusion events on
Twitter, including the propagation of news stories, videos, images, and petitions. We find that across all domains
and all sizes of events, online diffusion is characterized by surprising structural diversity; that is, popular events
regularly grow via both broadcast and viral mechanisms, as well as essentially all conceivable combinations
of the two. Nevertheless, we find that structural virality is typically low, and remains so independent of size,
suggesting that popularity is largely driven by the size of the largest broadcast. Finally, we attempt to replicate
these findings with a model of contagion characterized by a low infection rate spreading on a scale-free network.
We find that although several of our empirical findings are consistent with such a model, it fails to replicate the
observed diversity of structural virality, thereby suggesting new directions for future modeling efforts.
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1. Introduction
When a piece of online media content—say, a video,
an image, or a news article—is said to have “gone
viral,” it is generally understood not only to have
rapidly become popular, but also to have attained its
popularity through some process of person-to-person
contagion, analogous to the spread of a biological
virus (Anderson and May 1991). In many theoretical
models of adoption (Coleman et al. 1957, Bass 1969,
Mahajan and Peterson 1985, Valente 1995, Bass 2004,
Toole et al. 2012), in fact, this analogy is made explicit:
an “infectious agent”—whether an idea, a product, or
a behavior—is assumed to spread from “infectives”
(those who have it) to “susceptibles” (those who do
not) via some contact process, where susceptibles can
then be infected with some probability.1 Both intu-
itively and also in formal theoretical models, there-
fore, the notion of viral spreading implies a rapid,

1 Even models of social contagion that do not correspond pre-
cisely to the mechanics of biological infectious disease (for example,
“threshold models” (Granovetter 1978) make different assump-
tions regarding the nonindependence of sequential contacts with
infectives (Lopez-Pintado and Watts 2008)) assume some form of
person-to-person spread (Watts 2002, Kempe et al. 2003, Dodds and
Watts 2004).

large-scale increase in adoption that is driven largely,
if not exclusively, by peer-to-peer spreading. Clearly,
however, viral spreading is not the only mechanism
by which a piece of content can spread to reach a large
population. In particular, mass media or marketing
efforts rely on what might be termed a “broadcast”
mechanism, meaning simply that a large number of
individuals can receive the information directly from
the same source. As with viral events, broadcasts
can be extremely large—the Superbowl attracts over
100 million viewers, while the front pages of the
most popular news websites attract a similar num-
ber of daily visitors—and hence the mere observation
that something is popular, or even that it became so
rapidly, is not sufficient to establish that it spread in
a manner that resembles social contagion.
Figure 1 schematically illustrates these two styl-

ized modes of distribution—broadcast and viral—
where the former is dominated by a large burst of
adoptions from a single parent node, and the lat-
ter comprises a multigenerational branching process
in which any one node directly “infects” only a few
others. Although the stylized patterns in Figure 1
are intuitively plausible and also easily distinguish-
able from one another, differentiating systematically
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Figure 1 A Schematic Depiction of Broadcast vs. Viral Diffusion,
Where Nodes Represent Individual Adoptions and Edges
Indicate Who Adopted from Whom

between broadcast and viral diffusion requires one,
in effect, to characterize the fine-grained structure of
viral diffusion events. Yet, in spite of a large theoret-
ical and empirical literature on the diffusion of infor-
mation and products, relatively little is known about
their structural properties, in part because the requi-
site data have not been available until very recently,
and in part because the concept of virality itself has
not been formulated previously in an explicitly struc-
tural manner. Classical diffusion studies (Coleman
et al. 1957, Rogers 1962, Bass 1969, Valente 1995,
Young 2009, Iyengar et al. 2010), for example, typi-
cally had access to only aggregate diffusion data, such
as the cumulative number of adoptions of a prod-
uct, technology, or idea over time (Fichman 1992). In
such cases, the observation of an S-shaped adoption
curve—indicating a period of rapid growth followed
by saturation—is typically interpreted as evidence
of social contagion (Rogers 1962); however, S-shaped
adoption curves may also arise from broadcast dis-
tribution mechanisms such as marketing or mass
media (Van den Bulte and Lilien 2001). Compound-
ing the difficulty, real diffusion events are unlikely
to conform precisely to either of these conceptual
extremes. In a highly heterogeneous media environ-
ment (Walther et al. 2010, Wu et al. 2011), where any
given piece of content can spread via email, blogs, and
social networking sites as well as via more traditional
offline media channels, one would expect that popu-
lar content might have benefited from some possibly
complicated combination of broadcasts and interper-
sonal spreading.
To understand the underlying structure of an

event, therefore, one must reconstruct the full adop-
tion cascade, which in turn requires observing both
individual-level adoption decisions and also the social
ties over which these adoptions spread. Only recently
have data satisfying these requirements become avail-
able, as a result of online behavior such as blog-
ging (Adar and Adamic 2005, Yang and Leskovec
2010), e-commerce (Leskovec et al. 2006), multiplayer
gaming (Bakshy et al. 2009), and social network-
ing (Sun et al. 2009, Yang and Counts 2010, Bakshy
et al. 2011, Petrovic et al. 2011, Goel et al. 2012, Hoang
and Lim 2012, Tsur and Rappoport 2012, Kupavskii
et al. 2012, Jenders et al. 2013, Ma et al. 2013).

A second empirical challenge in measuring the
structure of diffusion events, which has in fact been
highlighted by these recent studies, is that the vast
majority of cascades—over 99%—are tiny and termi-
nate within a single generation (Goel et al. 2012).
Large and potentially viral cascades are therefore nec-
essarily very rare events; hence, one must observe a
correspondingly large number of events to find just
one popular example, and many times that number
to observe many such events. As we will describe
later, in fact, even moderately popular events occur
in our data at a rate of only about one in a thousand,
whereas “viral hits” appear at a rate closer to one in a
million. Consequently, to obtain a representative sam-
ple of a few hundred viral hits—arguably just large
enough to estimate statistical patterns reliably—one
requires an initial sample on the order of a billion
events, an extraordinary data requirement that is dif-
ficult to satisfy even with contemporary data sources.

In this paper, we make three distinct but related
contributions to the understanding of the structure
of online diffusion events. First, we introduce a rig-
orous definition of structural virality that quantifies
the intuitive distinction between broadcast and viral
diffusion and allows for interpolation between them.
As we explain in more detail below, our definition is
couched exclusively in terms of observed patterns of
adoptions, not on the details of the underlying gen-
erative process. Although this approach may seem
counterintuitive in light of our opening motivation
(which does make reference to generative models),
the benefit is that the resulting measure does not
depend on any modeling assumptions or unobserved
properties, and hence can be applied easily in prac-
tice. Also importantly, by treating structural virality as
a continuously varying quantity, we skirt any categor-
ical distinctions between completely “broadcast” and
“viral” events, allowing instead for open-ended and
fine-grained distinctions between these two extremes;
that is, events can be more or less structurally viral
without imposing any particular threshold for becom-
ing or “going” viral.

Our second contribution is to apply this measure of
structural virality to investigate the diffusion of nearly
a billion news stories, videos, pictures, and petitions
on the microblogging service Twitter. To date, most
studies directly documenting person-to-person diffu-
sion have been limited to a small set of highly viral
products (Liben-Nowell and Kleinberg 2008, Dow
et al. 2013), leaving open the possibility that such
hand-selected events are astronomically rare and not
representative of viral diffusion more generally. In
contrast, by systematically exploring the structural
properties of a billion events on Twitter, we aim to
estimate the frequency of structurally viral cascades,
quantify the diversity in the structure of cascades,
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and investigate the relationship between cascade size
and structure. It could be, for example, that the most
popular content is also extremely viral, but equally it
could be that successful products are mostly driven
by mass media (i.e., a single large broadcast) or by
some combination of broadcasts and word of mouth.
Depending on the relative importance of broadcast
versus viral diffusion in driving popularity, that is, the
relationship between popularity and structural viral-
ity could be positive (larger events are dominated
by viral spreading), negative (larger events are dom-
inated by broadcasts), or neither (all events regard-
less of size exhibit a similar mix of broadcasts and
virality, which scale together). Applying our struc-
tural virality measure to a representative sample of
successful cascades, we find evidence for the third
possibility, namely, that the correlation between pop-
ularity and virality is generally low. Moreover, for any
given size (equivalent popularity), structural virality
is extremely diverse: cascades can range between pure
“broadcasts,” in the sense that all adopters receive the
content from the same source, and highly “viral,” in
the sense of comprising multigenerational branching
structures.
The third contribution of this paper is to compare

our empirical observations of cascade structure to pre-
dictions from a series of simple generative models of
diffusion. Specifically, we conduct large-scale simula-
tions of a simple disease-like contagion model, similar
to the original Bass (1969) model of product adop-
tion, on a network comprising 25 million nodes. In the
simplest variant, we assume that the infectiousness of
the “disease” is a constant, and the network on which
it spreads is an Erdős–Rényi (ER) random graph. In
successively more complicated variants, we allow the
infectiousness to vary, or the network to be “scale
free” (i.e., where the number of neighbors can vary
from tens to tens of millions), or both. Because large
diffusion events are so rare, we also conduct on the
order of 1 billion simulations per parameter setting,
necessitating over 100 billion simulations in total. We
find that although our simplest models are incapable
of replicating even the most general features of our
empirical data, a still-simple model comprising con-
stant infectiousness and scale-free degree distribution
can capture many, but not all, of the observed fea-
tures. We conclude with some suggestions for future
modeling efforts.

2. Defining Structural Virality
We now turn to our first goal of defining structural
virality. Before proceeding, we reemphasize that our
notion of structural virality is intended to comple-
ment, not substitute for, the many existing genera-
tive models of viral propagation and their associated

parameters (Bass 1969, Granovetter 1978, Watts 2002,
Kempe et al. 2003, Dodds and Watts 2004). To clar-
ify, generative models attempt to describe the under-
lying diffusion mechanism itself—for example, as a
function of the intrinsic infectiousness of the object
that is spreading, or of the properties of the con-
tact process or the network over which the diffusion
occurs, or of the timescales associated with adoption.
By contrast, our notion of structural virality is con-
cerned exclusively with characterizing the structure
of the observable adoption patterns that arise from
some unobserved generative process. Naturally, the
particular value of structural virality associated with
some event will in general depend on the underlying
generative process—as indeed we will demonstrate
in §5, where we introduce and study several such
models. Importantly, however, our desired definition
of structural virality should not depend on these par-
ticulars. In other words, regardless of what contagion
process is (assumed to be) responsible for some piece
of content spreading or what network it is spreading
over, the end result is some pattern of adoptions that
exhibits some structure, and our goal is to character-
ize a particular property of that structure.
Recalling also that our goal is to disambiguate

between the broadcast and multigenerational branch-
ing schematics depicted in Figure 1, we first lay out
some intuitively reasonable criteria that we would
like any such metric to exhibit. First, for a fixed total
number of adoptions in a cascade, structural viral-
ity should increase with the branching factor of the
structure: specifically, it should be minimized for the
broadcast structure on the left of Figure 1 and should
be relatively large for structures with a high branch-
ing factor, as on the right of Figure 1. Second, for
a fixed branching factor, structural virality should
increase with the number of generations (i.e., depth)
of the cascade; that is, all else equal, larger branch-
ing structures should be more structurally viral than
smaller ones. Finally, and in contrast with multigener-
ational branching structures, larger broadcasts should
not be any more structurally viral than smaller broad-
casts; hence we require that, for the extreme case of
a pure broadcast, structural virality be approximately
independent of size.
A natural choice for such a metric is simply

the number of generations, or depth, of the cas-
cade. Indeed, after size, depth is one of the most
widely reported summary statistics of diffusion cas-
cades (Liben-Nowell and Kleinberg 2008, Goel et al.
2012, Dow et al. 2013). One problem with depth, how-
ever, is that a single, long chain can dramatically affect
the measure. For example, a large broadcast with just
one, long, multigenerational branch has large depth,
even though we would not intuitively consider it to be
structurally viral. To correct for this issue, one could
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instead consider the average depth of nodes (i.e., the
average distance of nodes from the root). This average
depth measure alleviates the problem of a handful of
nonrepresentative nodes skewing the metric, and intu-
itively distinguishes between broadcasts and multi-
generational chains. Even this measure, however, fails
in certain cases. Notably, if an idea or product tra-
verses a long path from the root and then is broadcast
out to a large group of adopters, the corresponding
cascade would have high average depth (since most
adopters are far from the root) even though most
adoptions in this case are the result of a single influ-
ential node.
Addressing the shortcomings of both depth and

average depth, we focus our attention on a classi-
cal graph property studied originally in mathemat-
ical chemistry (Wiener 1947), where it is known as
the “Wiener index.” Specifically, we define structural
virality ç4T 5 as the average distance between all pairs
of nodes in a diffusion tree T ; that is, for n> 1 nodes,

ç4T 5= 1
n4nÉ 15

nX

i=1

nX

j=1

dij1 (1)

where dij denotes the length of the shortest path
between nodes i and j .2 Equivalently, ç4T 5 is the aver-
age depth of nodes, averaged over all nodes in turn
acting as a root.
Our metric ç4T 5 provides a continuous measure of

structural virality, with higher values indicating that
adopters are, on average, farther apart in the cas-
cade, and thus suggesting an intuitively viral diffu-
sion event. In particular, as with depth and average
depth, over the set of all trees on n nodes ç4T 5 is min-
imized on the star graph (i.e., the stylized broadcast
model in Figure 1) where ç4T 5⇡ 2. Moreover, a com-
plete k-ary tree (as in Figure 1 with k = 2) has struc-
tural virality approximately proportional to its height;
hence, structural virality will be maximized for struc-
tures that are large and that become that way through
many small branching events over many generations.3
Although ç4T 5 satisfies some basic requirements

of theoretical plausibility, as with the other candi-
date measures we discussed it is possible to construct
hypothetical examples for which the corresponding
numerical values are at odds with the motivating
intuition. For example, a graph comprised of two stars
connected by a single, long path has large ç4T 5 but

2 Naive computation of ç4T 5 requires O4n25 time; however, as dis-
cussed in Appendix B, a more sophisticated approach yields a
linear-time algorithm (Mohar and Pisanski 1988), facilitating com-
putation on very large cascades.
3 Somewhat more precisely, for any branching ratio k << n, ç4T 5
increases with size n, whereas for k ⇡ n (i.e., pure broadcasts) it
does not; hence, increasing popularity corresponds to increasing
structural virality only when it arises from “viral” spreading, not
merely from larger broadcasts.

would not intuitively be considered viral. Whether or
not such pathological cases appear with any meaning-
ful frequency is, however, largely an empirical matter,
and hence the utility of the metric must ultimately be
evaluated in the context of real examples, which we
discuss in detail below as well as in Appendix B.

3. Data and Methods
Our primary analysis is based on approximately 1 bil-
lion diffusion events on Twitter, where an event con-
stitutes the independent introduction of a piece of
content into the social network—including videos,
images, news stories, and petitions—along with all
subsequent repostings of the same item.4 Specifically,
we include in our data all tweets posted on Twitter
that contained URLs pointing to one of several pop-
ular websites over a 12 month period, from July 2011
to June 2012.5 In total, we observe roughly 622 mil-
lion unique pieces of content; however, because indi-
vidual pieces of content can be posted by multiple
users, we observe approximately 1.2 billion “adop-
tions” (i.e., posting of content). Although our data
are not a total sample of Web content that is shared
on Twitter,6 they do include the vast majority and
hence are essentially unbiased at least with respect
to Tweets linking to Web content.7 Importantly for
our conclusions, our sample also exhibits consider-
able diversity both with respect to production and
consumption. For example, a typical online video
is likely to have been produced and distributed by

4 We use the term “reposting” rather than the more conventional
“retweet” because individuals frequently repost content that they
receive from another user without using the explicit retweet func-
tionality provided by Twitter, or even acknowledging the source of
the content.
5 For news those websites include bbc.co.uk, cnn.com, forbes.com,
nytimes.com, online.wsj.com, guardian.co.uk, huffingtonpost.com,
news.yahoo.com, usatoday.com, telegraph.co.uk, and msnbc.msn
.com.Forvideo they includeyoutube.com,m.youtube.com,youtu.be,
vimeo.com, livestream.com, twitcam.livestream.com, ustream.tv,
twitvid.com, mtv.com, and vh1.com. For images they include
twitpic.com, instagr.am, instagram.com, yfrog.com, p.twimg.com,
twimg.com, i.imgur.com, imgur.com, img.ly, and flickr.com. For peti-
tions they include change.org, twitition.com, kickstarter.com.
6 URLs and redirects were dereferenced from original tweets, and
extraneous query parameters were removed from URLs to identify
multiple versions of identical content. To avoid left censoring of
our data (i.e., missing the initial postings of a URL), we look for
occurrences of the URLs during the month prior to our analysis
period and only include in our sample instances where the first
observation does not appear before July 1, 2011. To avoid right cen-
soring, we restrict to tweets introduced prior to June 30, 2012, but
continue tracing the diffusion of these tweets through July 31, 2012.
7 It is of course possible that Tweets containing links to Web content
are systematically different from other Tweets in ways that might
affect our conclusions. For this reason, in Appendix D we conduct
a separate analysis of tweets containing long hashtags, which are
unlikely to diffuse outside of Twitter, finding qualitatively similar
results.

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

71
.6

7.
21

6.
23

] o
n 

22
 Ju

ly
 2

01
5,

 a
t 1

4:
39

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Goel et al.: The Structural Virality of Online Diffusion
Management Science, Articles in Advance, pp. 1–17, © 2015 INFORMS 5

an amateur videographer uploading his or her own
work onto YouTube, whereas an article appearing in
a major news outlet was likely written by a profes-
sional reporter. Moreover, the experience of watching
a video is quite distinct from that of reading a news
article, both in terms of the time and effort required
on the part of the consumer and also their goals—
for example, to be entertained versus informed—in
doing so. Due in part to these qualitative differences
on both the supply and also demand sides of the mar-
ket for media, we find large quantitative differences in
the frequency of the four domains; specifically, images
and videos are far more numerous than news stories,
and petitions are by far the least numerous. For sim-
ilar reasons, therefore, one might also expect quali-
tatively distinct sharing mechanisms to dominate in
different domains, leading to different patterns both
of popularity and also structural virality.
To evaluate the structure of online diffusion, for

each independent introduction of a unique piece of
content in our data we construct a corresponding dif-
fusion “tree” that traces each adoption back to a sin-
gle “root” node, namely, the user who introduced
that particular piece of content.8 Specifically, for each
observation of a URL whose diffusion we seek to trace,
we record (1) the adopter (i.e., the identity of the user
who posted the content); (2) the adoption time (i.e.,
the time at which the content was posted); and (3) the
identities of all users the adopter follows—hereafter
referred to as the adopter’s “friends”—fromwhom the
adopter could conceivably have learned about the con-
tent. For each such event, we first determine whether
at least one of the adopter’s friends adopted the same
piece of content previously. If no such friend exists,
then the adopter is labeled a “root” of the resulting
diffusion tree; otherwise, the friend who adopted the
content most recently before the focal adopter—and
who is most likely to have exposed the focal user
to the content—is labeled the focal adopter’s “par-
ent.” Although there is at times genuine ambiguity in
determining the proximate cause of an adoption, in
many cases adopters explicitly credit another individ-
ual in their tweet, allowing us to accurately infer an
adopter’s parent in approximately 95% of instances
(see Appendix C for details of the tree construction
algorithm and the associated evaluation procedure).

4. Results
Consistent with previous work (Bakshy et al. 2011,
Goel et al. 2012), we find that the average size of
these diffusion trees (also referred to interchangeably

8 Although diffusion trees are in reality dynamic objects, meaning
that they grow over time as new adoptions take place, here we
treat them as static objects representing the final state of a given
diffusion process.

Figure 2 Distribution of Cascade Sizes on a Log–Log Scale,
Aggregated Across the Four Domains We Study:
Videos, News, Pictures, and Petitions
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Note. CCDF= complementary cumulative distribution function.

as “cascades” or “diffusion events”) is 1.3—meaning
that for every 10 introductions of content, there are
on average three additional downstream adoptions.
More strikingly, and as noted in Goel et al. (2012),
we also find that the vast majority of cascades ter-
minate within a single generation; specifically, about
99% of adoptions are accounted for either by the
root nodes themselves or by the immediate follow-
ers of root nodes. As noted previously (Goel et al.
2012), however, the preponderance of small and shal-
low events does not rule out the possibility that
large, structurally interesting events do occur, only
that they occur sufficiently infrequently so as not to be
observed even in relatively large data sets. Exploiting
the fact that we have a much larger data set than in
previous studies—over a billion observations in our
initial sample—we therefore now focus exclusively on
the subsample of rare events that qualify as large, and
hence have the potential to be structurally interest-
ing. Specifically, hereafter we restrict attention to the
0.025% of diffusion trees containing at least 100 nodes
(Figure 2), a requirement that leaves us with roughly
1 out of every 4,000 cascades, and thus reduces the
number of cascades we study in detail from approxi-
mately 1 billion to 219,855.

4.1. Structural Diversity
From this subpopulation of “successful” diffusion
events, Figure 3 displays a stratified random sam-
ple ordered by structural virality !"T #. Specifically,
cascades with between 100 and 1,000 adopters were
ranked by !"T # and logarithmically binned, and a
random cascade was then drawn from each bin.9 We

9 We note that this exercise was performed only once to avoid hand
selection of the best “random” sample.
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Figure 3 A Random Sample of Cascades Stratified and Ordered by Increasing Structural Virality, Ranging from 2 to 50
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Notes. For ease of visualization, cascades were restricted to having between 100 and 1,000 adopters. Cumulative adoption curves (i.e., total cascade size over

time) are shown below each cascade, with time indicated in hours. For visual clarity, the adoption curves terminate at 99% of the final cascade size.

observe that the ordering from left to right and top
to bottom by increasing !"T # is strikingly consistent
with how these same structures would be ranked
intuitively in order of increasing virality, not only in
the trivial case of disambiguating broadcast and viral
extremes, but also in making relatively fine-grained
distinctions between intermediate cases. Thus, !"T #
not only seems to be a reasonable measure of struc-
tural virality in theory, but also performs well in prac-
tice. Considering now the cumulative adoption curves
shown below each cascade in Figure 3, we make
two further observations. First, although the shape
of these adoption curves varies considerably, from
events that experience a phase of rapid growth before
leveling off to events that grow almost linearly over
time, there is no consistent relationship with struc-
tural virality. Strikingly, in fact, the least structurally
viral of all our sampled events (top left) exhibits a
cumulative adoption curve that is almost indistin-
guishable in shape from the most structurally viral
(bottom right). Second, the timescales on which the
adoptions take place (noted in hours on the horizontal
axis of the cumulative plots) also varies widely, from
less than an hour (bottom left) to three days (top left).
As with the shape of the curves, however, there is no
consistent relationship between the timescale (speed)
of an adoption process and its associated structural

virality. We conclude that our measure of structural
virality not only effectively quantifies differences in
the underlying cascade structures, but is clearly doing
so by using features of the diffusion process that are
not captured by aggregated data.
The ordering also highlights our first main empir-

ical finding: Although the structures in Figure 3 are
all of similar size (i.e., have similar aggregate num-
bers of adopters), they exhibit remarkable diversity
in structure, from an approximately pure broadcast
(!"T # ≈ 2, top left) to an ideal-type branching struc-
ture (!"T # = 34, bottom right), with numerous inter-
mediate variations in between. The classical literature
on diffusion often posits a critical threshold—or “tip-
ping point”—for virality, suggesting a sharp break
between cascades that are viral and those that are not.
If the tipping point intuition is correct, one would
expect that relatively large diffusion events such as
those captured in the n = 100 (roughly one event in
4$000) to n = 1$000 (one in 100,000) range would be
dominated either by broadcasts on the one hand or
by viral spreading on the other hand, but that com-
binations of the two should not arise. More gener-
ally, one might expect only a handful of canonical
forms to account for the majority of large events: for
example, some events spread exclusively via broad-
cast, whereas others spread exclusively via word of
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Figure 4 Size and Structural Virality Distributions on a Log–Log Scale for Cascades Containing at Least 100 Adopters,
Separated by Domain
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mouth, and others still spread by some combination
of the two. In other words, whatever one’s intuitive
mental model of diffusion, one would likely expect to
find that successful diffusion events of a given size
would be typified by some combination of broadcast
and viral diffusion, or at least some small taxonomy
of types. It is striking, therefore, that Figure 3 shows
examples of fine-grained variations in structural viral-
ity across the entire range of possibilities.

4.2. Examining Popularity and Structural Virality
Although Figure 3 shows that one can find exam-
ples of cascades across the spectrum of structural
virality, it says little about their relative frequency
or how that varies by domain. To address these
questions, Figure 4(A) shows the size distribution
of cascades larger than 100 adopters for all four
domains—news, videos, images, and petitions—while
Figure 4(B) shows the corresponding distributions of
structural virality. As anticipated, Figure 4(A) shows
that cascades can grow very large: For images and
videos, the largest cascades attract several tens of
thousands of reposts, whereas the most popular news
stories are somewhat smaller (roughly 10,000 reposts),
and petitions smaller still (several thousand reposts).
In other words, although the vast majority of cas-
cades are indeed small, large cascades do occur, albeit
with low frequencies. Moreover, the size distributions
appear to cluster into two categories: one compris-
ing images and videos and the other comprising the
rather less popular categories of petitions and news
stories. In other words, the most popular videos and
images are more popular than the most popular news
stories and petitions not only because there are many
more of the former, but also because the correspond-
ing distributions exhibit a shallower slope; that is,
for any given percentile of the relevant population,
videos and images are more popular than petitions

and news stories. Although we lack a compelling
explanation for this systematic difference, we note
that the vast majority of the most popular Twitter
accounts belong not to news organizations or peti-
tion sites, but to celebrities, whose postings often con-
tain images and videos. Moreover, YouTube and Insta-
gram are among the top 10 most followed accounts,
further facilitating the visibility of videos and images,
respectively. It thus seems likely that one of the pri-
mary drivers of large image and video cascades is
their promotion by individuals with large numbers of
followers, consistent with past results (Bakshy et al.
2011).
Next, Figure 4(B) confirms the impression from Fig-

ure 3 that structural virality varies widely, from 2
(pure broadcast) to over 30. In particular, in contrast
to classical “tipping point” theories of diffusion, we
do not see a bimodal distribution of structural viral-
ity corresponding to broadcasts on the one hand and
viral spreading on the other, but rather a continuous
distribution of structural virality, confirming our ear-
lier speculation that in some sense every conceivable
combination of broadcasts and word-of-mouth trans-
mission is represented. Interestingly, however, popu-
lar petitions are substantially more structurally viral
than any other type of content, followed by videos,
images, and news stories. For example, whereas about
a quarter of popular petitions have structural virality
of at least 10—meaning that petitions having garnered
at least 100 adopters are quite likely to have grown
virally—only about 3% of videos, 1% of images, and
0.5% of news stories exhibit the same level of struc-
tural virality. In spite of the diversity evident both
in Figure 3 and Figure 4(B), therefore, the relatively
larger size of cascades involving videos and images
combined with their relatively low structural virality
suggests that the largest cascades in those categories
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Figure 5 Box Plot of Structural Virality by Size on a Log–Log Scale, Separated by Domain
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Note. Lines inside the boxes indicate median structural virality, whereas the boxes themselves show interquartile ranges.

are not especially viral in a structural sense. In the next
section, we examine this possibility in more detail.

4.3. Relationship Between Popularity and
Structural Virality

As pointed out earlier, the relationship between pop-
ularity (cascade size) and structural virality is not a
priori obvious; that is, depending on the empirically
observed preponderance of broadcasts in small ver-
sus large events, the relationship could be positive
(large events are less likely to be dominated by broad-
casts than small events), negative (large events are
more likely to be dominated by broadcasts than small
events), or neither. Put another way, if cascades typi-
cally grow via person-to-person diffusion, we would
expect structural virality to increase with cascade size.
On the other hand, if large cascades are the product of
broadcasts attributable to popular users on Twitter—
the most popular of whom have tens of millions of
followers—structural virality may not vary signifi-
cantly with size, or could even decrease.
We investigate this question by examining the dis-

tribution of structural virality conditional on cas-
cade size for each domain. First, and consistent with
Figure 4, Figure 5 shows that across all sizes for
which they occur, popular petitions are consider-
ably more viral than the other domains. Second,
Figure 5 shows that across all domains and size
ranges, structural diversity varies considerably, con-
firming again the visual impression of Figure 3.
Third, however, Figure 5 shows that for three out
of four domains—petitions, images, and videos—
median structural virality remains surprisingly invari-
ant with respect to size. For images and videos,
moreover, it is also surprisingly low: even the very
largest cascades, comprising 10,000 reposts or more,
exhibit median structural virality of less than 3, barely
more than the theoretical minimum of 2. For petitions,
meanwhile, median structural virality is between 7
and 8, roughly equivalent to a branching tree of depth

between three and four generations: not a pure broad-
cast but still relatively shallow. Finally, for news, the
relationship between size and structural virality is
more positive than for the other domains, but also still
surprisingly low. For cascades of size 100, for exam-
ple, median structural virality is approximately 3,
whereas for the largest observed news cascades, com-
prising 3,000 reposts, median structural virality is still
less than 8, comparable to petitions.
We emphasize that there is nothing inevitable about

this result. It could have been, for example, that the
very largest events are characterized by multigener-
ational branching structures—indeed that is the clear
implication of the phrase “going viral.” So it is sur-
prising that even the very largest events are, on aver-
age, dominated by broadcasts. It is also surprising
that the correlation between size and structural viral-
ity is so low. As shown in Figure 6, the correlation for
news is 0.2, indicating a positive but noisy relation-
ship, whereas for petitions it is even lower (0.04), indi-
cating almost no relationship at all, and for pictures
and videos it is essentially zero. In contrast with our
earlier result on diversity, which suggests that simply
knowing the size of a cascade reveals very little about
its structure, the combination of generally low values
of structural virality and low correlation with size sug-
gests that if popularity is consistently related to any
one feature, it is the size of the largest broadcast.10

As in our discussion of Figure 4, we can only
speculate about why (a) petitions are so much more
structurally viral for every size category than other
domains and (b) news stories show higher correlation
between size and structural virality. We suspect, how-
ever, that the main driving factor is once again a rela-
tive dearth of large broadcast channels for petitions in
particular and to a lesser extent news organizations.

10 We also note that these results are not affected by the fact that
the range of !"T # varies with cascade size; the results are qualita-
tively identical when we use a measure of structural virality with
a constant bounded range (see Appendix B).

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

71
.6

7.
21

6.
23

] o
n 

22
 Ju

ly
 2

01
5,

 a
t 1

4:
39

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Goel et al.: The Structural Virality of Online Diffusion
Management Science, Articles in Advance, pp. 1–17, © 2015 INFORMS 9

Figure 6 Correlation Between Cascade Size (Popularity) and
Structural Virality Across Four Domains
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The popularity of images and videos, by contrast,
is likely driven by celebrities, who increasingly have
tens of millions of followers on Twitter, and whose
posting behavior likely favors content of a personal
and often visual nature over news and calls to action.

5. Theoretical Modeling
To recap, we have three main empirical findings. First,
and consistent with previous work (Goel et al. 2012),
the vast majority of diffusion events are small and
accordingly lack much structure. Second, rare events
that do become large exhibit striking structural diver-
sity. And third, the size of these cascades is at most
weakly correlated to their structural virality. Together
these findings present an interesting theoretical ques-
tion, namely, can they be replicated by a single under-
lying generative mechanism? And if so, what features
are required? Although replicating some empirical
results with a theoretical model does not on its own
imply that the model is an accurate representation of
the true generative process (Ijiri et al. 1977), it is nev-
ertheless possible to rule some models out.
To address this question, we consider a series of

variations on the SIR model, a classical model of
biological contagion (Kermack and McKendrick 1927,
Anderson and May 1991) that has frequently been
adapted to model social diffusion processes,11 ini-
tially to the specific context of new product adop-
tion, where it is known as the Bass (1969) model,

11 Reflecting its origins in mathematical epidemiology, the model
is named for the three states—“susceptible,” “infectious,” and
“recovered”—that each node in the network can occupy. Numer-
ous variations of the basic SIR model have also been proposed,
included the SI model, the SEIR model (where the “E’’ indicates
“exposed”), the SIRS model, and so on (Anderson and May 1991).
Here we refer to all such models canonically as SIR models.

and subsequently to a wide range of other contexts
including the propagation of links over a network of
blogs (Leskovec et al. 2007). In any such model, there
are two key sets of parameters. First, when an indi-
vidual is infected (in the present case, with a piece of
content), he or she subsequently infects each of his or
her susceptible (i.e., not yet infected) contacts inde-
pendently with probability %. Often % is assumed to
be a constant, but in the current context—where it
refers to the “infectiousness” of content—it is natural
to think of it as being drawn from some distribution
(which itself may be described by additional parame-
ters). And second, we must specify the nature of the
contact process, which here we model as a network
in which k̄ is the average node degree (i.e., the num-
ber of opportunities a typical node has to infect oth-
ers) and & 2 is the degree variance.12

Before proceeding, it is helpful to introduce the
quantity r = k̄% (known in mathematical epidemiol-
ogy as the “basic reproduction number” or R0 of a
disease). As alluded to earlier, a standard result for
diseases spreading on random networks is that the
condition r = c, where c = 1/"1 + "&/k̄#2# ≤ 1, con-
stitutes a critical threshold or tipping point, separat-
ing two regimes: a “supercritical,” or “viral,” regime
r > c, in which small seeds can trigger exponential
growth leading to large epidemics, and a “subcritical”
regime r < c, in which the contagion almost surely
dies out after infecting only a small number of suscep-
tibles. From this general result, moreover, two more
specific results follow. First, in Erdős–Rényi random
networks G"n$p#, where the expected degree is k∼ np
and & 2 ∼ k (as n→&), the epidemic threshold condi-
tion reduces to r ∼ 1 for k≫ 1. And second, in scale-
free random networks (Barabási and Albert 1999) for
which the variance diverges with the size of the net-
work, it reduces to r ∼ 0 as n → & (Pastor-Satorras
and Vespignani 2001, Lyons 2000, Lloyd and May
2001), meaning that in sufficiently large scale-free net-
works, the subcritical regime effectively disappears.
These results are relevant to our analysis for two

reasons. First, because viral events for which r > 1
exhibit exponential growth regardless of network
structure and because we know from our data that
large events are extremely rare, we restrict our anal-
ysis to the region 0 < r < 1, corresponding to what
in everyday usage would be thought of as “subcriti-
cal” spreading. Second, because we will consider both
ER and scale-free random networks, the usual super-

12 Additional parameters are also natural. For example, we only
consider strict SIR models in the sense that after one time step,
infected nodes are “removed” from the dynamics, meaning that
they can no longer infect others nor become reinfected. Although
natural for our case, where having “adopted” piece of content one
cannot unadopt it, other assumptions are clearly possible, in which
case additional parameters would be needed.
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versus subcritical distinction is somewhat misleading.
Specifically, whereas it does have a clear meaning for
ER networks, for which only contagions with r > 1 are
viral in the everyday sense of growing exponentially,
in scale-free networks, all contagions are viral in the
technical sense of exceeding the epidemic threshold,
even though they are “dying out” as they attempt to
spread.13 As we will show next, in fact, models invok-
ing ER networks are easily dismissed as incompatible
with our empirical results, suggesting that the pop-
ular tipping point notion is largely irrelevant to the
kind of viral events we study here.
We consider four models of increasing complex-

ity and verisimilitude. In all cases, each realization
of the simulation commences with an entirely sus-
ceptible population comprising 25 million individuals
within which a single individual is randomly cho-
sen to be the initially infected “seed” and proceeds
until no further infections can take place.14 We start
by investigating contagions characterized by constant
Ç spreading on an ER random graph. In light of the
enormous attention paid to variations of this model
both in the mathematical epidemiology (Kermack and
McKendrick 1927, Anderson and May 1991) and mar-
keting (Bass 1969, Valente 1995, Bass 2004) litera-
tures, it is the natural baseline to consider. As noted
above, however, its relevance to our empirical data
can quickly be dismissed by showing that, consistent
with standard theoretical results (Anderson and May
1991), the cascade size distribution is tightly centered
around its mean regardless of the average network
degree or infection rate, which is qualitatively differ-
ent than the heavy-tailed size distribution we observe
in the data.
One explanation for this result is that our assump-

tion of constant Ç is unlikely to be correct.
Presumably, content introduced to Twitter exhibits
large differences in intrinsic interestingness and

13 The intuitive explanation for this counterintuitive result is that in
scale-free networks, a typical node is likely to be connected via at
most a short path to a “hub” node with an extremely high degree
that, if infected, can sustain an infection that would ordinarily die
out (Pastor-Satorras and Vespignani 2001).
14 Clearly on Twitter a single unique piece of content can be intro-
duced many times independently. In such cases, there is potential
for two cascades to “collide,” which clearly cannot happen in our
simulations, where we introduce only one seed at a time. In light
of the extreme rarity of large cascades, however, and the large size
of the Twitter network, such collisions are also rare; hence, we do
not believe this simplification has any significant consequences. We
also note that our model is a special case of what has been called
“simple contagion” (Centola 2010), in which the infection probably
is independent across multiple exposures. In contrast with “com-
plex contagion,” such as occurs in “threshold models” (Granovetter
1978), where multiple exposures can combine in highly nonlinear
ways, the use of individual seeds for simple contagion is relatively
unproblematic.

breadth of appeal, and therefore likelihood of being
shared. This observation motivates the next model
we consider, where the infection is again modeled
as spreading on an ER graph, but the infectiousness
of each piece of content, Çi, is now drawn from a
power law distribution Pr4Çi5 ⇠ ÇÉÅ

i , expressing the
more plausible assumption that a large number of
items in our sample are of low “quality” or “appeal”
and hence are unlikely to spread (low Ç), whereas
a small minority of appealing or high-quality items
are much more likely to spread (high Ç). Studying
this case, we do indeed recover the heavy-tailed size
distribution from our empirical results. Interestingly,
however, across parameter settings we consistently
observe high correlation between cascade size and
structural virality—because large cascades in ER must
necessarily be multigenerational—which again stands
in stark contrast to our empirical results. We there-
fore conclude that it is the ER network, not necessar-
ily the assumption about constant item quality, that is
responsible for the poor model fit.
Thus motivated, we now examine a third model

in which we again assume Ç to be a constant, but
the network is now a scale-free random network
(Barabási and Albert 1999), constructed using the con-
figuration method15 (Newman 2005, Clauset et al.
2009), reflecting the roughly power law degree distri-
bution p4k5⇠ kÉÅ observed for Twitter (Bakshy et al.
2011). Sweeping over the two parameters, Å and Ç,
we simulated content of varying infectiousness diffus-
ing over networks with varying degree skew. Figure 7
shows the results of nearly 100 billion simulations,
with 1 billion cascades generated for each parame-
ter setting 4Å1Ç5, roughly congruent with the number
of cascades we analyzed on Twitter. Figure 7 shows
that for certain parameters—r ⇡ 005 and Å ⇡ 203—
the model recapitulates several important features of
our empirical data.16 First, Figure 7(A) shows that
for this parameter setting the probability of a given
piece of content becoming “popular”—meaning that
it attracts at least 100 adoptions—is consistent with
the observed rate of roughly one in one thousand.
Second, Figure 7(B) shows that the mean structural
virality for these parameters is 5, which again is in
line with our observations. Third, Figure 7(C) shows
that the correlation between size and structural viral-
ity is also in the observed range. Finally, Figure 8
shows the full marginal distributions of size and viral-
ity, and the distribution of virality conditional on

15 For each node in the network, its number of followers (i.e., out-
degree) was first randomly selected according to a discrete power
law degree distribution with exponent Å, a minimum value of 10,
and a maximum value of 1 million. Then nodes in the networks
were randomly connected while preserving the specified degrees.
16 The power law exponent of Å ⇡ 203 is consistent with the
observed degree distribution on Twitter (Kwak et al. 2010).
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Figure 7 Likelihood of Becoming Popular (i.e., Having at Least 100 Adopters), Mean Structural Virality, and the Correlation Between Size and
Structural Virality for Simulated Cascades Generated from an SIR Model on a Random Scale-Free Network, Plotted as a Function of the
Model Parameters
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Note. Each line corresponds to a different exponent ! for the power-law network degree distribution, and r = "k̄ is the expected number of individuals a

random node infects in a fully susceptible population.

size for this parameter choice, where we again see
that the simulated cascades are similar to the empiri-
cally observed events. One notable difference between
empirical and simulation results, however, is that the
variance in each bin (as measured by the interquartile
range) in the rightmost plot in Figure 8 is consider-
ably less than that in Figure 5, indicating that empir-
ical cascades exhibit much more structural diversity
at any given size compared to those generated by the
model.
These simulation results can be interpreted in two

ways. On the one hand, it is striking that so sim-
ple a model—with only two tunable parameters—can
capture many of the basic empirical regularities of
what is undoubtedly a far more complex and mul-
tifaceted system. For example, although the success
of real-world products is almost certainly affected
by their quality, this connection is absent from our
model. Indeed, for any fixed parameter choice under
the SIR model, all cascades—the largest broadcasts,
the most viral cascades, and the many events that
acquire only a handful of adopters—have the same
infectiousness %. In other words, taking infectiousness
as a proxy for quality, in our simulations the largest
and most viral cascades are not inherently better than

those that fail to gain traction, but are simply more
fortunate (Watts 2002). On the other hand, it is also
interesting that our model is not able to fully cap-
ture the diversity of structural virality exhibited in the
empirical data. Although we can only speculate on
the reasons for this limitation, two possible explana-
tions immediately suggest themselves. The simplest
explanation is that as large as our simulated networks
are (25 million nodes), they are still not as large nor is
the network structure as complex as the actual Twitter
follower graph, which comprises roughly 500 million
users, the most connected of whom have well over
50 million followers. Possibly, therefore, the differ-
ence could be accounted for simply by increasing the
size of the networks by another one or two orders of
magnitude—an increase that is computationally chal-
lenging, but that is straightforward in theory. A sec-
ond, and perhaps more likely, explanation is that our
assumption of constant % remains too simplistic, and
that introducing such variation into our model would
also increase the variation of structural virality at any
given size.
The fourth and final model that we simulate there-

fore replaces constant % with %i drawn from a power
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Figure 8 Box Plot of Structural Virality by Size (on a Log–Log Scale) for 1 Billion Simulated Cascades Generated from an SIR Model on a Random
Scale-Free Network with != 2#3 and r = 0#5
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Note. CCDF, complementary cumulative distribution function.

law distribution, identical to the ER case in our sec-
ond model above. Surprisingly, however, a similarly
extensive set of simulations using this model finds
that it does not in fact lead to noticeably more struc-
tural diversity; moreover, it leads to high correlation
between size and structural virality. The reason for
both results is that higher (lower) values of %i gener-
ate larger (smaller) events, not more (less) structurally
viral events of the same size. Thus, even though the
diversity of %i does affect the size distribution of cas-
cades, for a given cascade size it does not gener-
ate more diversity of structural virality. Identifying a
mechanism that accounts for the observed diversity
of structural virality therefore presents an interesting
challenge for future modeling work.

6. Discussion
Returning to our opening motivation, our paper
makes three main contributions. First, we have intro-
duced the concept of structural virality, one of the first
measures to formally quantify the structure of infor-
mation cascades. Although our results are restricted
to the diffusion of information on Twitter, our struc-
tural approach to diffusion processes applies quite
generally, both to online and offline settings. It is
often claimed, for example, that some of the most
successful Internet products in recent history, such
as Hotmail, Gmail, and Facebook, were driven pri-
marily by word-of-mouth adoption, in part because
the companies that created these products did not
initially have large advertising budgets, and in part
because by design they contained features to explic-
itly encourage sharing. Yet these products also ben-
efitted from extensive media coverage, which might
have driven large numbers of adoptions from a small
number of broadcast events. Likewise, although pop-
ular Internet memes are typically described as having
spread virally, they also typically receive substan-
tial media coverage. Without reconstructing the actual
sequence of events by which a given product, idea, or

piece of content was adopted, and relatedly without
a metric for quantifying virality, the mere observa-
tion of popularity—however rapidly accrued—allows
one to conclude little about the relative importance of
viral versus broadcast mechanisms in determining the
observed outcome. With the appropriate data, there-
fore, our notion of structural virality could conceiv-
ably shed light on a much broader range of diffusion
processes than we have considered here.
Our second contribution is to measure the fine-

grain structure of nearly 1 billion naturally occur-
ring diffusion events in a specific online setting,
namely, Web content spreading on Twitter. In partic-
ular, we have identified hundreds of thousands of
large cascades—the biggest such collection to date—
revealing remarkable structural diversity of diffusion
events, ranging from broadcast to viral and containing
essentially everything in between, where we empha-
size that such an exercise would be difficult absent
a metric for classifying and ordering the structure
of these cascades automatically. In addition, we find
relatively low correlation between size and virality,
highlighting the difficulty of determining how con-
tent spread given only knowledge of its popularity.
Third, we have shown that a simple model of con-

tagion is broadly consistent with our empirical find-
ings. The theoretical literature has largely focused
on supercritical diffusion processes to model large,
viral cascades; however, the vast majority of diffu-
sion events comprise only a few nodes, and rarely
extend beyond one generation beyond the root node,
or seed (Goel et al. 2012). Events of this latter kind
are naturally attributable to subcritical diffusion,17
and hence one might thus be tempted to model
online diffusion via two categorically distinct mech-
anisms, separately accounting for the head and tail

17 For example, Leskovec et al. (2007) found that a susceptible-
infected-susceptible (SIS) model with % = 0'025, equivalent to
r ≈ 0'14, was able to replicate the size distribution of observed cas-
cades of links over a network of blogs.
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of the distribution. Indeed, the very label “viral hit”
implies precisely the exponential spreading of the
sort observed in contagion models in their super-
critical regime. It is therefore notable that essentially
everything we observe, including the very largest and
rarest events, can be accounted for by a simple model
operating entirely in the low infectiousness parame-
ter regime. Indeed our best model fit is for r ⇡ 005,
which is considerably lower even than a previous
“subcritical” estimate of Ç ⇡ 0099 based on the dif-
fusion of chain letters (Golub and Jackson 2010)—
a difference that is likely due to the heavy-tailed
(scale-free) degree distribution of Twitter.18
Finally, in addition to our three scientific contri-

butions, we note that our work also contributes to
the emerging field of computational social science in
the sense that it addresses a traditional social sci-
ence question—How does content spread via social
networks?—but answers it using a type and scale
of data that has only recently become available; that
is, only after tracing the propagation of over a bil-
lion pieces of content can we collect an unbiased
sample of large, and exceedingly rare, cascades to
observe their subtle structural properties. By contrast,
previous work (Goel et al. 2012) that investigated
the propagation of nearly one million news stories
and videos—one of the largest diffusion studies at
the time—was only able to observe relatively small
events, resulting in a qualitatively incomplete view of
diffusion. In a similar vein, the most relevant previ-
ous analysis of the structure of extremely large diffu-
sion events relied on just two examples, specifically
the reconstructed paths of two Internet chain let-
ters (Liben-Nowell and Kleinberg 2008). Although
collecting even two such examples required consider-
able ingenuity, it is nevertheless the case that inferring
general principles from so few observations is inher-
ently difficult (Golub and Jackson 2010, Chierichetti
et al. 2011). One of our main findings, in fact, is
that large diffusion events exhibit extreme diversity of
structural forms—a finding that necessarily requires
many examples. Thus, although our current work is
by no means exhaustive, its scale facilitates a signifi-
cant step toward describing the nature and diversity
of online information diffusion.

Appendix A. Computing Structural Virality
The average distance measure of structural virality that
we use, ç4T 5, has often been applied in mathematical

18 We note that this finding also recalls earlier work that sought
to account for the surprisingly long-term and low-level persis-
tence of computer viruses in terms of a low-infectiousness con-
tagion spreading over a scale-free network (Pastor-Satorras and
Vespignani 2001). Although that work did not address the struc-
tural properties of the events in question, the mechanism identified
as responsible—namely, low-infectiousness contagion combined
with the occasional encounter with a high-degree node—is largely
similar to the one investigated here.

chemistry, where it is known as the Wiener index, and its
efficient computation has also long been known. For com-
pleteness, here we present a simple and scalable method to
compute ç4T 5. We begin by showing how the Wiener index,
as well as the average depth of a tree, can be expressed in
terms of the sizes of various subtrees.

Lemma 1. For a tree T with n nodes, let depthavg denote the

average depth of nodes in the tree. Letting S be the set of all

subtrees of T , we have

1
n

X

S2S
óSó= depthavg + 10

Proof. For any node vi 2 T and any subtree S 2 S , let
ÑS4vi5 be 1 if vi 2 S and 0 otherwise. Then,

X

S2S
óSó =

X

S2S

nX

i=1
ÑS4vi5

=
nX

i=1

X

S2S
ÑS4vi5

=
nX

i=1
1+depth4vi50

The result now follows by dividing each side by n. É

Theorem 2. For a tree T with n nodes, let depthavg
denote the average depth of nodes in the tree, let distavg denote the
average distance between all pairs of distinct nodes (i.e., distavg =
ç4T 5), and let S be the set of all subtrees of T . Then,

distavg =
2n

nÉ 1


1+depthavg É

1
n2

X

S2S
óSó2

�
0 (A1)

In particular,

distavg =
2n

nÉ 1


1
n

X

S2S
óSó É 1

n2

X

S2S
óSó2

�
0 (A2)

Proof. Statement (A2) in the theorem follows directly
from (A1) together with Lemma 1, and so we only need
to establish statement (A1). For any two nodes vi1vj 2 T ,
let LCA4vi1vj5 denote their lowest common ancestor: the
unique node in T of greatest depth that has both vi and vj

as descendants (where a node is allowed to be a descendant
of itself). Since the shortest path between vi and vj goes
through LCA4vi1vj5, we have

dist4vi1vj5 = dist4vi1LCA4vi1vj55+dist4LCA4vi1vj51vj5

= 6depth4vi5Édepth4LCA4vi1vj557

+ 6depth4vj5Édepth4LCA4vi1vj557

= depth4vi5+depth4vj5É 2 ·depth4LCA4vi1vj550

Let subtrees4vi1vj5 be the set of subtrees that contain both
vi and vj , and observe that this set consists of exactly those
subtrees that contain LCA4vi1vj5. Since for any node v there
are 1+depth4v5 subtrees that contain it,

ósubtrees4vi1vj5ó= 1+depth4LCA4vi1vj550

Substituting this expression into the previous equation, we
see that

dist4vi1vj5= 2+depth4vi5+depth4vj5É 2ósubtrees4vi1vj5ó0
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For any node vi 2 T and any subtree S 2S , let ÑS4vi5 be 1 if
vi 2 S and 0 otherwise. Then, summing over all n2 pairs of
nodes, we have

nX

i1 j=1
dist4vi1vj5 = 2n2+2n

nX

i=1
depth4vi5É2

nX

i1 j=1

X

S2S
ÑS4vi5ÑS4vj5

= 2n2+2n
nX

i=1
depth4vi5É2

X

S2S
óSó20

The result follows by dividing through by n4nÉ15 the num-
ber of pairs of distinct nodes. É

Theorem 2 shows that ç4T 5 can be expressed in terms of
the sizes of subtrees of T . Algorithm 1 uses this observation
to efficiently compute ç4T 5.

Algorithm 1 (Computing ç4T 5)
Require: T is a tree rooted at node r
1: function Subtree-Moments(T 1 r)
2: if T 0size4 5= 1 then F The base case
3: size Ñ 1
4: sum-sizes Ñ 1
5: sum-sizes-sqr Ñ 1
6: else F Recurse over the children of the root r
7: for c 2 r 0children4 5 do
8: sizec , sum-sizesc , sum-sizes-sqrc

Ñ Subtree-Moments4T 1 c5
9: size Ñ 0

10: sum-sizes Ñ 0
11: sum-sizes-sqr Ñ 0
12: for c 2 r 0children4 5 do
13: size Ñ size+ sizec
14: sum-sizes Ñ sum-sizes+ sum-sizesc
15: sum-sizes-sqr Ñ sum-sizes-sqr

+ sum-sizes-sqrc
16: size Ñ size+ 1
17: sum-sizes Ñ sum-sizes+ size
18: sum-sizes-sqr Ñ sum-sizes-sqr+ size2

19: return size, sum-sizes, sum-sizes-sqr
20: function Average-Distance(T 1 r)
21: size, sum-sizes, sum-sizes-sqr

Ñ Subtree-Moments4T 1 r5
22: distavg Ñ 62 · size/4sizeÉ 157⇥

6sum-sizes/sizeÉ sum-sizes-sqr/size27
23: return distavg

Figure B.1 Box Plot of an Alternative Measure of Structural Virality—Average Cascade Depth—by Size (on a Log Scale), Separated by Domain

Note. Lines inside the boxes indicate the medians, whereas the boxes themselves show interquartile ranges.

Table B.1 Rank Correlation Between Alternative Measures of
Structural Virality

Average Relative Distinct Average

distance broadcast parent depth

Average distance 1 É0079 0073 0090
Relative broadcast É0079 1 É0098 É0066
Distinct parent 0073 É0098 1 0061
Average depth 0090 É0066 0061 1

Appendix B. Alternative Measures of
Structural Virality
Although we have demonstrated that our particular defi-
nition of structural virality is reasonable, there are several
other formalizations of the concept that also qualify as rea-
sonable candidates. In particular, here we consider the fol-
lowing three metrics:

1. the relative size of the largest broadcast (i.e., the
largest number of children of any single node in the dif-
fusion tree, as a fraction of the total number of nodes in
the tree);

2. the probability that two randomly selected nodes have
a distinct parent node;

3. the average depth of nodes in the tree.
Simple inspection shows that all three of these alterna-

tives distinguish between the extremes of a single, large
broadcast on the one hand and a multigenerational “viral”
cascade on the other. However, they all capture subtly dif-
ferent structural aspects of diffusion trees, and also fail
for somewhat different pathological cases. Consequently, as
with our primary definition above, it is difficult to evalu-
ate the utility of the various metrics on theoretical grounds
alone, or even to assess their similarity. In practice, however,
we find that they are all highly correlated with our cho-
sen average path length measure, and also with each other.
Specifically, Table B.1 shows that when computed over the
entire set of empirically observed cascades with at least
100 adopters, ç4T 5 has an absolute rank correlation greater
than 0.73 with all three alternative measures. Moreover,
our empirical results are qualitatively similar regardless of
which of these alternative measures of structural virality
we apply. For example, Figure B.1 shows the relationship
between size and average depth, analogous to Figure 5,
and from which essentially the same conclusions could be
drawn.
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Thus, although we cannot rule out the possibility that a
superior metric to ours can be defined, we can at least sub-
stantiate two related claims: first, that our choice of metric
is at least roughly as good as a number of other plausible
candidates, and second, that our substantive findings are
robust with respect to the particular manner in which we
formalize the concept of structural virality.

Appendix C. Tree Construction Method
Here we describe the process of constructing a diffusion tree
for a particular piece of content (e.g., a given URL). Trees
are composed of one node for each user who has adopted
the content, and each edge links a user back to an inferred
“parent.” After each adoption has been identified as either
a root or the child of another post, we construct the cascade
of adoptions.

In an ideal setting we would have access to this infor-
mation for each adoption, but in practice these details are
not always available. The best-case scenario is use of Twit-
ter’s official retweet functionality, which enables a user to
effectively forward a tweet that was originally authored
by someone else. Attribution is clear in these cases, and
tree construction would be relatively straightforward if all
adoptions were of this form. Unfortunately, however, users
also repost content using a variety of unofficial conven-
tions, which complicate the attribution task. For instance,
the unofficial retweet convention amounts to copying the
text of a tweet and prepending “RT @username” to credit
another individual. Twitter treats these posts as originally
authored content and has no formal way of linking them
back to original posts. Finally, users may forego crediting a
source entirely, in which case one must make an educated
guess about who (if anyone) in their feed exposed them to
the content and who should be credited as responsible for
their adoption.

We decompose the process of inferring a parent into two
steps, described in detail below. We estimate that our infer-
ence procedure correctly identifies the parent of an adoption
in approximately 95% of instances.

1. Identify potential parents. For each user who adopts a
piece of content, we identify a set of “potential parents,”
defined as individuals whose adoption of a piece of con-
tent appears in the focal user’s timeline prior to the focal
user’s adoption. In other words, potential parents are the
set of individuals who are likely to have exposed the user to
the adopted content. To identify these potential parents, we
note that a user’s timeline contains (1) all posts originally
authored by the user’s friends and (2) tweets authored by
others that at least one of the user’s friends has “officially
retweeted” using Twitter’s built-in reposting functionality.
In particular, any tweet appears at most once in a user’s
timeline regardless of how many of his or her friends have
officially retweeted it.19 To compute the set of potential par-
ents for a given adoption, we join activity from the Twitter
Firehose application programming interface (API), which
provides details about each tweet, with the Twitter follower
graph, which provides the listing of who follows whom.

19 Any nonofficial reposting—e.g., using the “RT @username”
convention—is considered originally authored, resulting in poten-
tially repeated content in a user’s timeline.

2. Infer a single parent. We now identify the single most
likely parent from the set of all potential parents of a given
adoption. To do this, we consider three cases based on how
the focal user posted the content.

a. Official retweet. If the focal user officially retweeted
a post that appeared in their timeline (i.e., retweeted the
post via Twitter’s built-in functionality), then the Twitter
API provides the ID of the original tweet. We then use
this information to identify the individual who introduced
the post to the user’s timeline as the parent. We note that
the parent need not be the original author of the tweet—
for example, in the case of a friend who retweeted a third
party, as described above. Also, users occasionally officially
retweet content that did not appear in their timelines (e.g.,
because they discovered it by browsing); in these cases we
treat the focal user as a “root” and do not assign a par-
ent. Overall, in these official retweet cases—which consti-
tute 65% of the instances we consider—we almost certainly
correctly attribute the tweet.

b. Accredited repost. In the case of a nonofficial retweet,
credit may still be present in the form of a mentioned user,
for example, using the “RT @username” convention. We
identify as the parent the individual who most recently
introduced a post of that content, authored by the men-
tioned user, to the focal user’s timeline. This mentioned user
may be a friend of the focal user, in which case the friend
is assigned as the parent. Alternatively, the mentioned user
may be a third party—e.g., a friend of a friend. In this case,
the friend who most recently mentioned the accredited user
along side the piece of content is identified as the parent.
As above, if no such friend can be identified, we treat the
focal user as a root and do not assign a parent. Accredited
posts constitute 10% of the adoptions we analyze, and as
in the case of official retweets, the inferred parent is almost
certainly correct.

c. Uncredited repost. In this final, case we lack any
explicit information about how the user was exposed to the
content and simply assign as the parent the friend who most
recently introduced the content to the focal user’s timeline.
If no such friend exists, we again treat the focal user as a
root. To assess the accuracy of our inference strategy in this
case, we apply it to the set of official retweets, for which
we are fairly certain which individual is the parent of any
given adoption. We find that the most-recent-introduction
heuristic correctly identifies the parent 79% of the time.

Since our inference procedure almost certainly identifies
the correct parent in the first two cases—official retweets
and accredited reposts, which together account for 75% of
adoptions—and since we estimate 79% accuracy for the
remaining 25% of adoptions, we conclude that the overall
accuracy of our parent inference strategy is 95%.

Appendix D. Off-Channel Diffusion
Although our empirical findings are qualitatively quite sim-
ilar across the four distinct domains studied above, it is pos-
sible that all four suffer from one of two systematic biases
that might affect our conclusions. First, a potential problem
with studying the diffusion of external content on Twitter
(e.g., news stories from the New York Times and videos from
YouTube) is that the same content may also spread via other
channels, such as Facebook or email. As a result of this “off-
channel” diffusion, two individuals on Twitter who appear
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Figure D.1 Size and Structural Virality Distributions on a Log–Log Scale for Popular Hashtag Cascades, Containing at Least 100 Adopters
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Note. CCDF, complementary cumulative distribution function.

to have introduced the same piece of content independently
may in fact be connected, thus leading us to mistakenly treat
a single diffusion tree as two disjoint events. A second con-
cern is that our use of reposting rather than retweeting also
potentially biases our data. Specifically, user–follower sim-
ilarity (i.e., homophily) may lead connected users to post
the same content independently in close temporal sequence,
leading us to conflate similarity with influence (Shalizi and
Thomas 2011, Aral et al. 2009, Lyons 2011).

To check that off-channel diffusion does not system-
atically bias our findings, we consider the diffusion of
Twitter-specific “hashtags”—short fragments of text used to
indicate the topic of a tweet. Because such hashtags are less
likely to have originated outside of Twitter, and because for
the same reason they are less likely to migrate off of Twitter,
these data are correspondingly less susceptible to any biases
associated with off-channel diffusion. Moreover, to ensure
as much as possible that we are considering only on-Twitter
uses of hashtags, we restrict our sample to “long” hash-

Figure D.2 Box Plot of Structural Virality by Size on a Log–Log Scale
for Hashtag Cascades
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Note. Lines inside the boxes indicate the median structural virality, whereas

the boxes themselves show interquartile ranges.

tags, which are especially unlikely to be used elsewhere. To
define “long,” we note that hashtags on Twitter are gen-
erally written in camel case (e.g., #CamelCase). Treating
each substring that begins with a capitalized letter and ends
immediately before the next capitalized letter as a “word,”
we trace the diffusion of hashtags that include five or more
such words (e.g., #ThisIsALongHashtag). As infrequent as
these long hashtags are relative to hashtags in general, they
are still plentiful, amounting to 58,000 cascades with at least
100 adopters. Figures D.1 and D.2 show that the diffusion
of these long hashtags yields qualitatively similar results to
our primary analysis, suggesting that off-channel diffusion
is not driving our findings.
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