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ABSTRACT
Every day millions of users share links and post comments on
di�erent social networks. At scale, this behavior can be very useful
for building a new type of search engine that exploits relevant links
and their associated metadata in a temporal fashion. Our goal is
to �nd links that are relevant on social networks as a mechanism
to discover what people are talking about at a given point in time
and make such information searchable and persistent. In other
words, a continually updated archive of relevant content that is
currently being shared, beyond the obvious trending news of the
day. �e techniques we use surface new and interesting content
by mining social network posts that contain links, constructing
di�usion trees from those links, and extracting related entities
and other associated metadata. By looking at the size of the trees
and their structure in combination with the conversation around
each link and related topics, we designed and implemented a search
engine that provides relevant fresh content and features a “wayback
machine”. We demonstrate the e�ectiveness of our approach by
processing a dataset comprising millions of English language tweets
generated over a one year period. Finally, we perform an o�ine
evaluation of our techniques and conduct a use case study using
an available data set of fake and real news links.

1 INTRODUCTION
With more than 400 million tweets being generated every day,
Twi�er has fast grown into one of the largest sources of real time
information on the Internet. People tweet about a range of topics
varying from personal thoughts to their opinion about ongoing
events. �e ease with which this information can be published
and shared has been one of the primary reasons for the success of
such microblogging services. On the �ip side, the low barrier for
information generation has led to the proliferation of uninteresting
content and di�culty in �nding relevant information. A lot of the
generated data is either noise, duplicates, or information which is
of low value for a global audience. In addition, the scale of this data
makes it hard to not only index, aggregate and search, but also to
e�ciently mine it to extract interesting and meaningful insights.

Searching for relevant content in social networks is not a solved
problem. �e temporal signal is important for real-time search [7]
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and for re-�nding posts [16] but not really exploited as a feature.
Twi�er and Facebook o�er trending features that show a term or
phrase that represents a very high activity due to the increased rate
of people talking about the topic. By selecting a particular trend,
relevant posts are returned, ranked by some engagement metric
like number of likes, shares per link, retweets, or similar. Trending
features are limited to extremely popular items and fail to surface
other relevant, but perhaps less globally popular, content. Also, it
is not possible to see what was trending in the past.

Tweets can contain links shared by other users in the form of
re-tweets or favorites (likes) producing a cascading e�ect. �at is,
collaborative content creation and sharing by users in the platform.
We can think of this sharing activity as large-scale human compu-
tation that aggregates and �lters high-quality information. How
can we take advantage of these fresh new links and create a new
type of search engine? In contrast to current web search engines
that are based on link citation for ranking websites, we propose
a di�erent approach that relies on a combination of temporal and
sharing behavior making relevant information always fresh, while
at the same time providing “wayback machine” functionality.

We present two use case scenarios that involve searching for
now and then: 1) a user searches for the latest information on
a topic and 2) a user searches for what was said in the past for
a given topic. �e �rst scenario may look similar to a popular
news or trending scenario. �is di�ers from traditional news in
that the content is selected by aggregate user behavior instead of
editors and includes more than just the most popular content at any
given time. Regarding the second scenario, searching in the past is
now limited to using re-�nding techniques [16], trying the Internet
Archive’s wayback machine, or examining the notes and references
of a Wikipedia page. We archive what the crowd noted as relevant
at a particular point in time and make it easily accessible.

�e research questions are: (R1) what are the main characteristics
of a search engine that focuses on the social web? and (R2) how
feasible would be to search on the past using our techniques?

Our work requires the design and implementation of a working
system that indexes Twi�er data over a period of time. �e engi-
neering e�ort is driven by our research on a number of speci�c
components. �at is, identi�cation of high quality links based on
a combination of viral and popular metrics—the quality and ap-
peal of these links has been justi�ed by prior work (see below);
the extraction of useful metadata from links and topics; the use of
trusted users as an endorsement signal; and the ability to create
temporal snapshots that are later used for searching in the past. We
also provide a user interface based on social cards (links, people,
pivots) as an alternative to the common top-10 links provided by
traditional search engines.
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2 RELATEDWORK
�ere is a large body of work that looks at the problem of iden-
tifying currently popular content [4, 22]. While the details vary
across implementations, the basic idea behind all of this work is to
look for items that are experiencing a large and sudden increase
in popularity—likes, clicks, retweets, etc.—over a relatively short
period of time. �is tends to surface the most extremely popular
content in any given time window, o�en revealing celebrity stories,
top-line news stories featured across major media outlets, or tweets
from popular, real-world events [5]. And while such stories are
surely of interest to many users, at the same time, popularity-based
trending algorithms miss a good deal of interesting and relevant
content.

�e work we present here leverages past results in [12] to identify
trending content based not just on how popular it is, but by how
it spreads throughout the population of a social network. In other
words, we seek to identify content that looks “viral” based on how
it is being shared. Interestingly, as shown in [12], the most viral
content at any given time is o�en distinct from the most popular
content being shared online. As we demonstrate here by identifying
and exposing viral stories in near real-time, virality-based rankings
tend to surface items that are more niche in nature while still of
interest to a large audience.

It is worth noting that since our metric for virality is so di�er-
ent from popularity, even complex analytics or machine learning
pipelines based on the la�er will tend to yield di�erent stories. �is
is because the “reward signal” [15] that drives these pipelines is
fundamentally di�erent. Algorithms for ranking web pages such
as PageRank and HITS are based on the (slowly-varying) linkage
of pages on the web. Our research ignores the “web graph” com-
pletely, looking instead at how links are shared over time through
a social network. Page-ranking algorithms typically do not incor-
porate social e�ects, nor do they vary at the timescales of social
sharing.

Augmenting search results with social data, known as social
annotations, has been an area of recent product and research work
by Google, Microso� and Yahoo as part of their search engines
[19], [18], [10], [14]. It is unclear how e�ective social annotation
is for the social web. Other relevant research includes extracting
links from tweets for discovering new information [20], presenting
distinct search results compared to Google and Bing [1], and for
identifying planned social events [21]. Twi�er’s Earlybird search
engine architecture is presented in [7] but does not expand more
on how Twi�er uses link sharing information for search.

�ere is new research that taps into the di�erent motivations and
dynamics for link sharing content in social networks. From a non-
information retrieval perspective, the study of social bu�ons and
other counters as a metric for user engagement has been coined as
the ‘Like economy’ by [11]. A separate study of the value of tweets
as anchor text is presented in [17]. A large analysis on URL sharing
behavior on Twi�er is described in [8]. Looking at user activity
as a human computation image classi�cation task in Pinterest is
described in [23].

Link 
information

Trusted users 
who shared 

the link

Pivots

Posts as link
annotations

Related hashtags
and queries

User exploration

Figure 1: A social card contains three components: link in-
formation (e.g., image, title, etc.), a sample of trusted users
who have share the link, and a number of pivots.

3 SYSTEM OVERVIEW & PRELIMINARIES
In contrast to traditional web search engines that show the top-10
most relevant links along with query-biased snippets, our system
presents search results as social cards (Figure 1). A social card
contains an image associated with a link, a page title and short
description, the name(s) of high-pro�le users who have shared
the link along with their related posts, “pivots”, and the ability to
examine user accounts in more detail. Pivots are a subset of the link
annotations that allow users to query by related topics or hashtags.
We can think of social cards as a variation of social annotations in
traditional search engines. However, instead of augmenting links
in the search engine result page, the results are more visual and the
annotations more prominent, providing context. Related hashtags
and queries are selected from a ranked list as explained later.

�e functionality works as follows. In the search box, the user
can type a query and see a list of social cards that are temporally
aware as presented in Figure 2, ranked according to our link rele-
vance technique. By clicking on the calendar and selecting a date,
the user can search (or browse) to see what was relevant on that
day, thus providing a archival functionality.

Before describing the main techniques, we introduce the follow-
ing terminology. An adopter is a Twi�er user who tweeted about a
link. A friend is someone the Twi�er user follows. A di�usion tree
describes how a link has spread among a set of adopters from one
friend to the next. �e nodes are the adopters; an edge from user U
to user V indicates that V learned about the link from U. A forest is
the set of all trees for a given link and is used to compute the link
popularity and virality as explained below.

4 BACK-END PIPELINE
�is section contains a detailed description of our methodology
and the back-end pipeline that we use to detect and index relevant
links. We discuss the challenges that we faced especially in scaling
this pipeline to work on large datasets and provide insights into
our design choices. �e processing pipeline includes the following
basic steps, which are described in detail in the subsequent sections:

(1) Content selection: select tweets that contain links and
satisfy simple user, content and time range criteria.
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Figure 2: An example of social cards ranked by virality score. Note that user’s posts augment the link by providing more
context and/or opinions. Using the calendar button on the top le�, it is also possible to go back in time and see links that were
viral in the past.

(2) User selection: extract and normalize links and select those
that have been shared by a minimum number of trusted
users.

(3) Link selection: clean-up links, compute link virality and
popularity, cluster similar links.

(4) Final cut: apply heuristic criteria to select good quality
links.

(5) Annotations: generate metadata for the selected links from
the associated tweets.

(6) Indexing and presentation.

4.1 Tweet Selection
As a �rst step, we select all the tweets that were posted in a chosen
time range, including retweets. We have experimented with various
ranges from one hour to one month, but for the rest of this paper
we use a one day time period. For the tweets in the time range, we
keep only those that contain links.

Other simple �lters are applied at this stage so that only tweets
of good quality are used and spam content is removed. �e �ltering
is done by selecting only tweets whose language is detected as
English and have a minimum computed quality score [3].

4.2 Link Pre-Processing and User Filtering
Once an initial set of tweets is selected, the links are extracted and
normalized using a set of domain-speci�c rules to avoid spurious
duplicates. For example, query parameters are removed that might
make two links appear di�erent when in fact they refer to the same
story. Not all query parameters can be removed: the video ID in
YouTube links, for example, is critical for distinguishing content.
�is stage also uses the MinHash clustering algorithm to identify

near-duplicate documents at scale [6]. �e algorithm works by
computing a summary sketch of the content linked to by each URL,
speci�cally the minimum value of a hash function applied to each
token on the page. Several of these summary sketches are computed
using di�erent hash functions and are combined to form a “shingle
print” for the page. As shown in [6], the probability that two pages
have the same summary sketch is proportional to the fraction of
overlap in their content, and so we can use the shingle print as an
identi�er for clusters of content later in the pipeline.

Within the time period considered, only one tweet per adopter
per link is used; this ensures that the di�usion trees of a link that
will be computed later will span disjoint subsets of Twi�er users.
Associated link information is also extracted from the available
metadata (e.g., Twi�er cards, Open Graph metadata, etc.), such as
the link title, description, image and type. Links are also categorized
with an existing system into Open Directory-like categories.

�e main �ltering that happens in this stage is user-based. First,
only links from adopters who have a minimum number of followers
are selected. A second �lter selects only those links that have been
shared by a minimum number of “trusted users”. �is minimum
number depends on the time period under consideration; for a one-
day interval, we require at least one trusted user among the set of
adopters.

�e concept of “trusted users” refers to users who reliably tweet
high-quality content and share relevant links [13]. Trusted users are
identi�ed by using Twi�er’s veri�ed users (a manually selected set
of users that has been veri�ed by Twi�er sta�) as a seed set which
is expanded by crawling activity on the social network. Starting
with the veri�ed users, we detect other users who have had a
conversation with them, initiated by the veri�ed user. �ese users
then become trusted and belong to the �rst “ring” of trusted users.
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Figure 3: Two di�usion trees for two di�erent links. Each node depicts an account and edges indicate that the child account
adopted from its parent. �e tree on the le� shows “broadcast” di�usion where all adoptions are straight from the source,
whereas the tree on the right shows multi-generational di�usion typical of viral content.

�is process is repeated several times, gradually increasing the set
of trusted users from the thousands of veri�ed to tens of millions
of trusted users. �is �ltering of users is necessary because of the
high numbers of fake and spam accounts on Twi�er. Because the
set of trusted users is in the order of tens of millions, the �ltering
does not a�ect the links that are selected later signi�cantly, since a
viral link is very likely to have been shared by at least one trusted
user. �e main result of this �ltering is that it limits the in�uence
of fake or spam accounts in the construction of di�usion trees, as
explained in the next section.

4.3 Link Selection
�is stage focuses on the selection of the links that will be shown
in the system. Link selection consists of �nding links that are either
popular or viral.

To select links we use an algorithm developed by Goel et al. [12].
�e algorithm constructs a forest of di�usion trees for each link
and computes metrics on this forest to determine the popularity
and virality of the links. �e algorithm works as follows:

• Aggregate tweets by link.
• For each adopter of a link, crawl his/her friend list to deter-

mine the most likely person he/she heard it from. Follow-
ing Goel et al. [12], we assume this is the friend who most
recently tweeted the link unless explicit retweet informa-
tion is provided. (Other selection rules are possible, e.g.
using frequency of communication within a recent time
window, but we have yet to explore these alternatives.)
• Use the above to construct the di�usion trees for the link.
• Characterize the size of the trees—a measure of popularity—

and the structure of the trees—a measure of virality. Cur-
rently, we use the average pairwise distance between nodes
of the tree as a measure of virality and the number of nodes
as a measure of popularity.

�e forest constructed for each link provides a chronological and
visual depiction of the di�usion of the story through the Twi�er
network. Figure 3 shows two example trees for two di�erent links
computed by our system, where each node represents an account
on Twi�er that has posted that link and an edge indicates that the
child node adopted from its parent, either through a retweet or
repost. �e top-most node is the root of the tree, having introduced

the story without any of its friends previously doing so. Each gen-
eration adopted a�er its parents, although time is not explicitly
shown in the visualization. Both of these trees have approximately
the same popularity in that they contain an almost equal number of
nodes, but the structure of the two trees di�ers drastically. In par-
ticular, the tree on the le� is characteristic of “broadcast” di�usion
where a popular outlet with a large direct audience (e.g., the New
York Times or CNN) posts content that is adopted by many of its
followers but mostly ceases to spread further. �e tree on the right,
in contrast, depicts “viral” di�usion where the story is continually
shared by small audiences over many generations.

In theory there are a number of metrics that can quantify the
di�erence between such di�usion processes. As mentioned above,
here we use the Weiner Index proposed by [12], which is simply
the average pairwise distance between nodes in the di�usion tree:

ν (T ) = 1
n(n − 1)

n∑
i=1

n∑
j=1
j,i

di j , (1)

where di j indicates the length of the shortest path between nodes
i and j. A low score of approximately 2 on this index represents
a broadcast event, whereas a higher score represents more viral
events.

4.3.1 Crawling the Twi�er graph. Constructing the di�usion
trees requires knowing the user from whom each adopter heard
about a link. We query the Twi�er API to obtain the friend list of
each adopter, from which we select its parent in the tree (if one
exists). Since Twi�er imposes a rate limit on their API, issuing
these queries on-demand (during the viral link computation) is
prohibitively expensive, and thus we run a crawl in the background.
�e crawl prioritizes both trusted users as well as users with high
tweet activity in the preceding month. During viral link detection,
queries for the friend list simply return the latest results of the
crawl.

4.3.2 Similar link clustering. A�er the di�usion trees have been
computed, similar links are clustered using the link shingle prints
computed in a previous stage. Other combinations of features are
incorporated, such as a normalized link URL and link title similarity.
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ID Tweet
1 At least 3 dead, 7 injured in #Lafaye�e shooting, police say gunman 58-year-old ’lone white male’ h�p://t.co/xUcLzsuKgq
2 58-yr-old ’lone white male’ killed 2 people & wounded 9 during showing of ’Trainwreck’ before turning gun on

himself h�p://t.co/ecBQx9Rbye”
3 Mysterious dri�er identi�ed as Louisiana movie theater gunman h�p://t.co/VtbVW1eZ3J via #Foxnews
4 Police say ’dri�er’ killed 2, injured 9 in Lafaye�e, La. movie theater shooting h�p://t.co/l3DnganpmO h�p://t.co/YLhj2UP31r

Table 1: �e social signature {movie theater, Lafayette, gunman opens fire} for the tweets presented in this example.

All normalized links in the same cluster with the same shingle
print are deemed to refer to the same story, and so their di�u-
sion trees are merged. Of the links that remain, only those with
a minimum number of adopters (across the forest of all trees) are
considered for inclusion, and their popularity and virality metrics
are computed.

4.3.3 Link selection. At this point the links have already been
pre-�ltered and the virality and popularity scores have been com-
puted. As found in [12], there is a surprisingly low correlation
between popularity and virality, and so we choose links based on
both measures. We select popular links that are above a certain
threshold, dependent on the time period being used. Separately
thresholding by a minimum virality score allows us to identify in-
teresting content that has spread from one person to the next, even
if it is not the most popular content being passed around.

Content diversity is o�en a key requirement of internal cus-
tomers of our system, and simply presenting the overall most viral
(or most popular) links does not guarantee a diverse set of stories.
We have found, in general, that the viral structure of stories varies
by topic, and thus we leverage the link categories provided during
pre-processing to group links by category and select the most viral
and popular links across categories.

4.4 Final Filtering
A �nal �ltering stage ensures that the data shown to the user are
not only of su�cient quality but are also well-presented to users.
To this end we apply a set of empirically derived criteria:

• Links that match their domain are discarded, as these lead
to the domain homepage and not to a speci�c document.
Even though they may be popular, such links are not very
useful.

• Tweets that are missing important metadata for the shared
link (e.g. missing title) are also removed. �ese tweets are
useful when computing the virality and popularity scores
of the link, but they are not appropriate for display

• �e language of the linked document is detected and non-
English links are removed. �is could have occurred at an
earlier stage, but it is computationally cheaper to reduce
the number of links in the previous stages, before scraping
and performing language detection for the target page.

�e output of this stage is the �nal set of links used in the system.

4.5 Metadata Generation and Link Annotation
Before any links can be shown to the user, they must be annotated
with related information. �is information consists of:

• �e link title, description and image.

• Selected tweets that mention the link. �ese are selected
a�er ranking the users by trusted ring number and number
of followers. �ey are also �ltered to remove retweets,
@user responses, or tweets that contain profanity.
• Hashtags associated with the link, which can be used for

re-querying for other links related to the hashtag.
• N-grams associated with the link, computed based on the

social signature technique described as follows. Once the
high quality links have been identi�ed, we extract the chat-
ter around them in the form of n-grams using a statistical
model that identi�es salient terms [2]. For computing the
signatures, we use the text of the tweets that share the link
(a�er clean-up). Table 1 shows four tweets that link to the
same article and the social signature for that link. �ese
can also be used for re-querying for other links related to
the n-gram.

4.6 Indexing and Presentation
In the �nal stage we prepare the data for presentation. �e system
supports two types of use: (1) show the top viral or top popular
links for a given date (overall or per category) as a home page,
and (2) allow searching by hashtag or n-gram for relevant viral or
popular links.

For the �rst use case we select the highest quality links relevant
to the user’s query. We choose links with titles, descriptions and
good images (not broken or boilerplate images like the logo of the
news site). We also select links that are documents (e.g. no links
that are photos, vines, etc.), not redirects, and have “good” �le path
structure (e.g. �le system path depth not too long or too short etc.).

For the second use case we do not apply any of these �lters
because we assume that a user conducting a search is be looking
for an overly complete set of results. In both cases we rank the
presented set of links by virality or popularity according to the
user’s choice. More advanced ranking functions that interleave
viral and popular links can also be used.

To support search, we �nd all the hashtags and n-grams that are
mentioned with a link and also the n-grams from the link’s social
signatures. �e top hashtags and n-grams are shown underneath
each link as part of the result card and clicking on them conducts a
search for related links. We also build an index of links to support
searching for any hashtag or n-gram that the user enters in the
query box.

5 SYSTEM IMPLEMENTATION
Having presented the logic underlying our pipeline, in this section
we provide details of the system that executes it. A distributed
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cluster is well suited for processing the �rehose of tweets and se-
lecting those that match the �ltering criteria. We have used the
SCOPE [9] language to implement the pipeline. Implementing the
viral link detection as a SCOPE job however requires a computa-
tionally expensive three-way join between three relations: (adopter,
link), (adopter, friend), and (friend, link), in addition to the link
processing described above. �erefore, in order to continuously
detect viral links over a sliding time window, we need to reuse as
much of the computation as possible between runs. We achieve
this by decoupling both the link processing and the Twi�er graph
crawl from the construction of the di�usion trees. Link processing
greatly reduces the number of tweets to consider and produces a
dataset that can be repeatedly processed by the tree construction
algorithm over di�erent (overlapping) time windows. Running the
graph crawl in the background avoids the rate-limited, synchro-
nous calls to the Twi�er API in the middle of tree construction.
Together, this allows us to run the viral link detection every hour
over a trailing 24-hour window.

An unfortunate consequence of rate-limited access to the Twi�er
API is that we cannot pinpoint our view of the Twi�er graph to
a narrow time interval. Crawling the entire graph takes months,
and our current prioritization of users to crawl is not in�uenced
by the tree construction process. Doing the la�er is possible, but
it would more than double the tree construction time because we
�rst need to determine which trees are viral before we know which
user links to refresh, which in turn requires us to reconstruct the
trees. Such on-demand refreshing of user links is more viable
during real-time construction of the viral trees (discussed below).
In general, although we rely on the Twi�er �rehose, our current
processing is not real-time: we wait for a given hour’s data to
stabilize, e.g. 30 minutes a�er the hour ends, before including it in a
query. �is means that our results can be replicated to some degree
by relying on the publicly-accessible Twi�er Search and Streaming
APIs (h�ps://dev.twi�er.com/docs). �e key di�erence is that the
�rehose gives us access to all the Twi�er data, not just a sample of
the data or the most recent data matching a search criteria.

Providing real-time detection of viral links is the subject of on-
going and future work. In particular, we have built a pipeline that
consumes the Twi�er �rehose directly and incrementally constructs
the di�usion trees of each link. �is pipeline supports a sliding win-
dow similar to that of the SCOPE job, but the window is advanced
at a much �ner granularity: ancestors of the tree are constantly
being phased out while new descendants are being added. �e addi-
tion of a potential descendant creates an opportunity to refresh the
corresponding user’s friend list; whether such API calls can be man-
aged at scale remains to be seen. Moreover, incremental processing
restricts the amount of link �ltering and pre-processing that can be
done a priori, thus imposing di�erent resource requirements and
scalability challenges outside the scope of this paper.

6 RESULTS AND EVALUATION
Due to con�dentiality we cannot disclose the user engagement,
query log, or behavioral data we used in evaluating our system. �at
said, the core of our research is on techniques for manipulating large
data sets e�ciently and not so much on the end-user perspective
so, instead, we present evaluation results as follows. We �rst report
the daily numbers that our system process in every stage of the data

Phase Tweets Links Users Hashtags Ngrams
Content selection 227M 54M 25M - -
User selection 90M 18M 17M - -
Link selection - 15K - - -
Final cut - 1K - 9K 3K

Table 2: Daily numbers produced by the four stages of the
data processing pipeline. �e “-” indicates that the value is
computed at a later stage or because the value is not used in
a later stage.

Please help us evaluate the relevance of an article (or link) and
associated information (e.g., image, hashtags, and users). You’ll
be given a recent article that has been shared by a user in a social
network like Twi�er along with its related hashtag. Your task is
to assess the quality of each item in the 4 question below.

Article: [Image] [Link]
Hashtag: “#thehashtag”
Shared by [User]

Q1. Do you think this article would be interesting to at least some
users?
[] Yes [] Somewhat [] No
Q2. Do you think the image thumbnail is relevant to the article?
[] Yes [] Somewhat [] No [] Other (broken, too small, low
quality)
Q3. Do you think the related hashtag is informative about the
article?
[] Yes [] Somewhat [] No
Q4. Do you think the article is shared by a credible user?
[] Yes [] Somewhat [] No

Figure 4: O�line task relevance evaluation template.

processing pipeline. �is gives the reader an idea of the computation
that is required to run the system on a daily basis and the impact of
each step. We then show an o�ine relevance evaluation task using
a standard crowdsourcing approach. For the “wayback machine”
feature, we use the US Elections 2016 event as comparison against
a well-documented Wikipedia page. Finally, we demonstrate how
our techniques help �lter fake links using an available data set.

6.1 Daily Numbers
For the 24-hour window of tweets that we describe in this paper
and a�er all the �ltering we apply, we produce a data set per day
consisting of approximately 1,000 links. Table 2 shows more details,
including the output of each stage. Some values are missing, either
because that value is computed at a later stage (e.g. number of
hashtags at the beginning), or because the value is not used in a
later stage (e.g. number of tweets in the �nal stage).
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�estion Yes Somewhat No
Q1 99% 1% 0%
Q2 80% 10% 8%
Q3 64% 22% 14%
Q4 70% 16% 14%

Table 3: O�line relevance evaluation results.

6.2 O�line Evaluation
We conducted an o�ine evaluation using an internal crowdsourcing
tool1 for collecting labels. �e data set consisted of 100 items
selected at random and each item was assessed by 5 human judges
with the majority vote treated as �nal label. Results are presented
in Table 3 and the evaluation template is presented in Figure 4. �e
link relevance results con�rm that the link selection works well and
the user endorsement numbers are also reliable. �e identi�cation
of the pivots (i.e., related topics or hashtags) on the other hand is
an area that needs improvement. For example, some of the pivots
are a bit too generic (e.g., #news) or too brand speci�c (i.e., #cnn)
and they do not seem to provide enough value to the user.

Evaluation results
R@25 82%
R@25 (�ltered) 92%
P@25 86%
R@50 93%
P@50 92%

Table 4: Evaluation metrics for the US Elections. R@25 in-
dicates recall considering the top-25 hashtags comparing to
the Wikipedia page. Similarly, P@50 indicates precision
considering the top-50 hashtags.

6.3 Wayback Machine
As described earlier, our system contains a wayback machine fea-
ture that allows users to go back in time to search and discover.
To evaluate the accuracy of this functionality, we extract the top-
25 hashtags per day for 2016 (9K in total) and manually annotate
the ones that refer to the US elections forming a list of political
events in reverse chronological order. We then compare against
the Wikipedia US election timeline page that contains an entry per
event, used as baseline, and compute precision and recall:

Precision (P) =#(relevant entries retrieved)
#(retrieved entries)

Recall (R) =#(relevant entries retrieved)
#(relevant entries)

Overall, our system returns 82% of the entries compared to the
baseline. However, if we discount third party events (e.g., Liber-
tarian presidential debate, Libertarian National Convention, Green
National Convention, etc.), the recall increases to 92%. If we in-
crease coverage by taking the top-50 hashtags for 2016 (18K in
1h�p://research.microso�.com/en-us/um/redmond/events/fs2012/presentations/
rajesh patel.pdf

total), the recall is 93%, including the previously discarded third
party events. For precision, we use the top-50 hashtags and measure
if any of those hashtags match the title of the Wikipedia page entry
for the same speci�c time slot. As example, for 2/18/2016, more than
one relevant hashtag are present in top-50 (e.g., SCPrimary, GOP-
TownHall, DemTownHall) related to the event (“Republican town
halls are held in Greenville, South Carolina and Columbia, South
Carolina”). �e reported precision is 92%. and is computed as the
ratio of matched entries over the retrieved entries from Wikipedia
page (the ground truth). Table 4 shows a summary of the recall
metrics. Due to space constraints, Table 5 presents a condensed
version of the US elections timeline along with the top ranked po-
litical hashtag for the same date. In summary, the social tagging in
aggregate works pre�y well for enumerating the main topics for
a given day, thus creating a representative crowd-based temporal
annotation.

�e wayback machine feature allows the user to zoom into a
particular day by searching or browsing. Figure 5 shows an ex-
ample for the day of the US Elections (November 8) and the day
a�er (November 9). For Election day, the results are mostly about
people voting and potential irregularities. �e hashtags for that day
describe the magnitude of the event with references to the main
candidates by name or slogan. �e day a�er the election shows a
di�erent picture: celebrities announcing moving to Canada (there
is also an associated hashtag) and reactions to the new president.
Hashtags like #notmypresident and #calexit (California exit from
the US) echo the sentiment from a segment of the population a�er
the election results.

6.4 Fake News Case Study
�e proliferation of fake news on social networks has been the
technology story of the 2016 US elections. A recent analysis by
BuzzFeed2 examined the engagement on Facebook of top fake and
real election news stories from 19 major news outlets. �e analysis
found that the top fake election news stories generated more total
engagement than the top election stories. We used the same set
of top fake and top real news to study how our system handled
this content. Our study consisted of feeding this data set through
our data processing pipeline and reporting how and where each of
the many steps contributed in �ltering out the fake stories. Even
though the dataset from BuzzFeed is limited, it can still indicate to
what extent our system is susceptible to fake news.

�e set of links under consideration was divided in 3 time buckets
(February to April, May to July, and August to Election day). Each
bucket has 20 fake and 20 real labeled news articles. Whereas the
BuzzFeed study was done on links shared, commented or liked on
Facebook, our pipeline operates on links shared on Twi�er, so there
are di�erences in engagement. Overall, we found that the total
number of shares of the real links was higher than the fake links,
with fake link shares exhibiting a big increase in the time bucket
just before the election (Figure 6). �is di�ers from the BuzzFeed
�ndings, where the engagement of the fake was higher than the
real for the August-Election bucket and where the engagement for
the real stories was actually decreasing with time.

2h�ps://www.buzzfeed.com/craigsilverman/viral-fake-election-news-outperformed-
real-news-on-facebook
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Date Hashtag Entry slot fromWikipedia page
1/14 #GOPDebate Sixth Republican debate is held in North Charleston, South Carolina
1/17 #DemDebate Fourth Democratic debate is held in Charleston, South Carolina
1/25 #DemTownHall A Democratic forum, a Town Hall event, is held in Des Moines, Iowa
1/28 #GOPDebate Seventh Republican debate is held in Des Moines, Iowa
2/4 #DemDebate Fi�h Democratic debate is held in Durham, New Hampshire
2/6 #GOPDebate Eighth Republican debate is held in Manchester, New Hampshire
2/11 #DemDebate Sixth Democratic debate is held in Milwaukee, Wisconsin
2/13 #GOPDebate Ninth Republican debate is held in Charleston, South Carolina
2/25 #GOPDebate 10th Republican debate is held in Houston, Texas
3/1 #SuperTuesday Super Tuesday
3/3 #GOPDebate Eleventh Republican debate is held in Detroit, Michigan
3/5 #SuperSaturday Democratic and Republican primaries/caucuses
3/6 #DemDebate Seventh Democratic debate is held in Flint, Michigan
3/8 #MichiganPrimary Democratic and Republican primaries/caucuses
3/9 #DemDebate Eighth Democratic debate is held in Miami, Florida
3/10 #GOPDebate Twel�h Republican debate is held in Miami, Florida
4/14 #DemDebate Ninth Democratic debate is held in Brooklyn, New York
4/26 #SuperTuesday Democratic and Republican primaries/caucuses
5/20 #PrimaryDay �ird nationally televised Libertarian presidential debate
6/7 #PrimaryDay Democratic and Republican primaries/caucuses
6/22 #LibTownHall Libertarian presidential town hall hosted and aired by CNN
7/18-7/21 #RNCinCLE Republican National Convention is held in Cleveland, Ohio
7/25-7/28 #DemsInPhilly Democratic National Convention is held in Philadelphia, Pennsylvania
9/26 #debatenight First presidential debate was held in Hempstead, New York
10/4 #VPDebate Only vice presidential debate was held in Farmville, Virginia
10/9 #debate Second presidential debate was held in St. Louis, Missouri.
10/19 #debatenight �e third presidential debate was held in Las Vegas, Nevada
11/8 #ElectionNight US Election Day
11/19 #ElectoralCollege �e electors of the Electoral College meet and formally vote.

Table 5: Comparison of the top hashtags detected by our techniques versus slots in the Wikipedia page (h�ps://en.wikipedia.
org/wiki/United States presidential election, 2016 timeline#2016) for the main events in the US Elections 2016. �e second column
shows the highest ranked political hashtag (other semantically similar hashtags are available).

To study how our di�erent steps contributed to the �ltering of
the links, we ran our data pipeline on each temporal bucket and
looked for the presence of the labeled data set at each step of the
pipeline. Figure 7 shows charts comparing the number of real links
and fake links over the four steps of data pipeline. Step 0 in Figure 7
corresponds to the input to the pipeline (i.e. the initial data set of
20 fake and 20 real links).

By looking at the �rst row, for the �rst bucket, all the fake links
(and 9/20 of real) were �ltered out. Step 3 (viral link computation)
contributes the most in the reduction of the fake links. Almost all
of the fake links are not viral enough to be selected, whereas most
of the real news links are viral enough and get selected. �e second
bucket shows similar behavior. In the last bucket, as we get closer
to the election, it becomes harder to �lter out fake links based on
virality alone, since a lot more people are sharing these types of
links. Step 3 contributes but not as much as in the previous two
cases; speci�cally it reduces the fake links to half. However, step
4 further reduces the fake links by applying other �ltering on the
link metadata and user metadata associated with the link.

Our system was not designed with the goal of identifying and
removing fake links. Indeed, even though several fake news links
are �ltered out, some still remain. As shown in in the �rst row of
�gure 7, the bulk of the �ltering is happening in step 3, the viral
score computation. �e removed links all had relatively low viral

scores. A few fake links actually had high viral scores and were
not removed. �is is more prevalent in the last time bucket from
August to Election day. In that bucket, a higher proportion of fake
links had high viral scores. We cannot say with certainty why this
happens and the data set is too small to know if this is a common
phenomenon with all fake links. It seems plausible however that
as the election day approaches, people become more engaged and
share political articles more frequently, thus causing high viral
scores for them. We can further improve the fake �ltering by �ne
tuning some parameters. We can imagine many ways of optimizing
the pipeline at each step by including additional conditions. For
example, we tried adding the following:

• Content selection: > 200 shares per link
• User selection: > 1 veri�ed user and > 50 users from

trusted user data set (veri�ed + ring 1 + ring 2)
• Link selection: > 2.2 virality score

By using the above optimizations, the �nal number of fake and
real links that remains does not change much from before. It seems
there is some correlation between user/content �lters and viral
�ltering, in that very viral links also tend to get shared by veri�ed
users and through high-quality tweets. So, for example, we can
�lter by either high virality or veri�ed users and both will remove
several of the same fake links.
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#electionday, #election2016, #trump, 
#maga, #brexit, #electionnight, 
#imwithher, #hillary, #draintheswamp, 
#clinton, #imvotingbecause, 
#voterfraud, #wikileaks, #trump2016, 
#socialmedia, #votegreen2016, #vote, 
#trumppence16, #hillaryclinton, 
#votetrump, #neverhillary, 
#foxnews2016, #trumptrain, 
#myvote2016, #electionfinalthought

#electionnight, #trump, 
#election2016, #decision2016, 
#electionday, #uselection2016, 
#maga, #elections2016, 
#notmypresident, #donaldtrump, 
#uselections2016, #clinton, 
#presidenttrump, #election, #calexit, 
#brexit, #business, #trumpwins, 
#Canada, #electionresults, #politics, 
#myvote, #presidentelecttrump, 
#usa, #hillaryclinton

November 8

November 9

Figure 5: Wayback machine example for the two �nal days of the 2016 US Election. �e screenshot shows search results and
top-25 hashtags for both days.
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Figure 6: Total shares for the top 20 fake and top 20 real
election stories.

�e additional �ltering conditions however have the e�ect of
moving the �ltering of some fake links to earlier steps, so we can
improve the �ltering and the overall computation cost of the data
processing pipeline (there are less links at step 3 for which we
need to compute viral scores). Additionally, we can achieve a more
gradual change in precision/recall allowing us to stop at an earlier
step if needed (so if we stop a�er step 3 we can get more real links
and some fake, but not as many fake as before the optimizations).
For example, before the optimizations, most of the fake �ltering
in the February-April bucket happens in Step 3; before and a�er
that step there is li�le change on the number of links. A�er the
optimizations (charts in the second row), each step contributes its

share of �ltering as shown in the �gure. For completeness, we also
present the charts for the other two time buckets.

Even though our techniques were not designed with the explicit
goal of detecting fake links, the �ltering, selection and di�usion
tree computation are shown to be e�ective in reducing fake links.

7 CONCLUSION AND FUTUREWORK
Past research in the �eld of social data mining, especially on the
Twi�er network, has focused on extracting sentiments, trending
topics, communities of similar users and summaries from tweets.
Much of this work is based on formulating and evaluating sophisti-
cated algorithms using manually selected datasets that are either
small or biased towards noise-free content. Such assumptions about
the underlying data makes it hard to deploy these techniques in
real-world systems, where e�ciency in data processing and scalable
implementations are as important as the e�ectiveness of the system.
Our approach consists on techniques that can process large scale
data sets and can be implemented in a distributed infrastructure.

Here we emphasized a working system that can ingest and
archive data over time, tested with a real-world data set, with
the goal of prototyping a new type of search engine. Our �ndings
suggest that mining relevant links shared by trusted users is not
only a reliable mechanism for selecting high quality content, but it
can also be adopted for ranking content. By applying a number of
�lters and viral detection techniques, we can identify high quality
links discovered within a certain period of time. �is temporal
aspect helps not only in providing relevant and fresh content, but
also with the ability to look back in time.

�e content selected by users re�ects a collective interest that
is very rich when exploring it as an archive. �e US 2016 election
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Figure 7: Fake news study on Twitter. �e �rst row shows three charts each comparing the number of real links (colored in
blue, positive y-axis) vs. fake links (colored in orange, negative y-axis) over the four steps of the data pipeline (x-axis; step 0 in
the the charts means the starting data set). Second row shows the results once we apply optimizations that can help improve
the �ltering and the computation cost of the processing pipeline.

example shows not only that the system collects the proper data for
reconstructing a story, but also that such data mirrors real events.
With the wayback machine we can retrieve content and associated
cha�er that was relevant for a speci�c period in time.

We provide an extensive description of the techniques and al-
gorithms used along with data points and other data management
details so our �ndings can be replicated by other researchers using
Twi�er or similar social networks. Unfortunately, business reasons
do not allow us to release the source code. As part of our evaluation
results, we also demonstrate that the proposed data processing
pipeline can be used to identify and �lter fake links. While fake
link detection was not the goal of our work, the results show that
aggressive �ltering should be an essential piece of any social web
solution that strives for relevant content and not an a�erthought
like in current systems.

Future work includes personalization of the search results, or-
ganization of the links by categories, improving the quality of the
pivots, be�er archiving, and enhancing the diversity of the links.

REFERENCES
[1] Rakesh Agrawal, Behzad Golshan, and Evangelos E. Papalexakis. 2015. Whither

Social Networks for Web Search?. In KDD. 1661–1670.
[2] Omar Alonso, Sushma Bannur, Kartikay Khandelwal, and Shankar Kalyanaraman.

2015. �e World Conversation: Web Page Metadata Generation From Social
Sources. In WWW. 385–395.

[3] Omar Alonso, Catherine C. Marshall, and Marc Najork. 2013. Are Some Tweets
More Interesting �an Others? #Hard�estion. In HCIR ’13. 2:1–2:10.

[4] Farzindar Atefeh and Wael Khreich. 2015. A survey of techniques for event
detection in twi�er. Computational Intelligence 31, 1 (2015), 132–164.

[5] Hila Becker, Mor Naaman, and Luis Gravano. 2011. Beyond Trending Topics:
Real-World Event Identi�cation on Twi�er. ICWSM 11 (2011), 438–441.

[6] Andrei Z Broder. 1997. On the resemblance and containment of documents. In
Compression and Complexity of Sequences 1997. Proceedings. IEEE, 21–29.

[7] Michael Busch, Krishna Gade, Brian Larson, Patrick Lok, Samuel Luckenbill, and
Jimmy J. Lin. 2012. Earlybird: Real-Time Search at Twi�er. In ICDE. 1360–1369.

[8] Cheng Cao, James Caverlee, Kyumin Lee, Hancheng Ge, and Jin-Wook Chung.
2015. Organic or Organized?: Exploring URL Sharing Behavior. In CIKM. 513–
522.

[9] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Simon
Weaver, and Jingren Zhou. 2008. SCOPE: easy and e�cient parallel processing
of massive data sets. PVLDB 1, 2 (2008), 1265–1276.

[10] Jennifer Fernquist and Ed H. Chi. 2013. Perception and understanding of social
annotations in web search. In WWW. 403–412.

[11] Carolin Gerlitz and Anne Helmond. 2013. �e like economy: Social bu�ons and
the data-intensive web. New Media & Society 15, 8 (2013), 1348–1365.

[12] Sharad Goel, Ashton Anderson, Jake M. Hofman, and Duncan J. Wa�s. 2016.
�e Structural Virality of Online Di�usion. Management Science 62, 1 (2016),
180–196.

[13] Martin Hentschel, Omar Alonso, Sco� Counts, and Vasileios Kandylas. 2014.
Finding Users we Trust: Scaling up Veri�ed Twi�er Users Using their Communi-
cation Pa�erns. In ICWSM.

[14] Vasileios Kandylas and Ali Dasdan. 2010. �e Utility of Tweeted URLs for Web
Search. In WWW. 1127–1128.

[15] John Langford and Tong Zhang. 2007. �e Epoch-Greedy Algorithm for Contex-
tual Multi-armed Bandits. In NIPS.

[16] Florian Meier and David Elsweiler. 2016. Going back in Time: An Investigation
of Social Media Re-�nding. In SIGIR. 355–364.

[17] Gilad Mishne and Jimmy J. Lin. 2012. Twanchor text: a preliminary study of the
value of tweets as anchor text. In SIGIR. 1159–1160.
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