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ABSTRACT
Icon arrays are graphical displays in which a subset of identical
shapes are filled to convey probabilities. They are widely used for
communicating probabilities to the general public. A primary de-
sign decision concerning icon arrays is how to fill and arrange
these shapes. For example, a designer could fill the shapes from
top to bottom or in a random fashion. We investigated the effect of
different arrangements in icon arrays on probability perception. We
showed participants icon arrays depicting probabilities between
0% and 100% in six different arrangements. Participants were more
accurate in estimating probabilities when viewing the top, row, and
diagonal arrangements, but they overestimated the proportions
with the central arrangement and underestimated the proportions
with the edge arrangement. They were biased to either overes-
timate or underestimate when viewing the random arrangement
depending on the objective proportions, following a cyclical pattern
consistent with existing findings in the psychophysics literature.
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1 INTRODUCTION
Imagine you had just extracted a key piece of probabilistic infor-
mation from your data, perhaps that the rate of patients getting an
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allergic reaction to a treatment is 25%. Now it’s time to share it with
a group of stakeholders. How would you effectively communicate
this probability to a general audience? Past work has demonstrated
that icon arrays - also known as pictographs or information grids
- are a simple and effective medium for communicating risks and
probabilities to laypeople [18, 24, 33, 56, 67]. Icon arrays are com-
posed of juxtaposed icons representing members in a group (e.g.,
men above 60 years old), and designers typically communicate in-
formation by changing the shape, color, or other visual properties
of a subset of icons. For example, to express a 25% risk of getting
an allergic reaction after a treatment, you might design a 10 by 10
grid of 100 circles with 25 of them emphasized in black.

Icon arrays have been shown to help people understand prob-
abilistic information by leveraging the human perceptual system
[47], especially those with lower numeracy skills [23, 31, 33]. Addi-
tionally, icon arrays present probabilistic information using natural
frequencies (e.g., 10 out of 100) instead of using proportions or
percentages (e.g., 10%). This design choice of replacing proportions
or percentages with counts of X out of Y has been shown to more
often elicit optimal statistical inferences and increase numerical
comprehension [20, 34, 38]. Furthermore, the one-to-one mapping
of the entity-to-discrete-icon induces a sense of recognition and
self-identification [41], which tends to increase engagement with
data [39]. For instance, when a patient reads an icon array convey-
ing information regarding health risks, they can better relate to the
information by projecting themselves as one of the icons [41].

Despite the strengths of icon array visualizations, designers still
have many decisions to make before they can produce an optimal
icon array design. For example, the iconicity level, which ranges
from being abstract (e.g., a rectangular block) to concrete (e.g., a
stick-figure or a picture of a human), can affect risk perception
[63]. Lower iconicity is associated with lower risk perception, and
higher iconicity with higher risk perception. However, while prior
research provides useful insights, it remains unclear how different
design choices can impact probability perception in icon arrays.
In particular, we do not know if the way filled icons are spatially
arranged in an icon array can cause systematic perceptual biases
in the estimation of frequencies and proportions.

Stylistic choices for how icon arrays are filled might impact the
viewer’s perception of probability by changing the perceptual prox-
ies the viewers use to extract numerical values from the icon arrays
[36, 65]. Most existing work that investigates the effectiveness of
icon arrays focuses on comparing icon arrays in the top-to-bottom
arrangement or a random arrangement (see Top and Random in
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Figure 2) to other representations, such as numbers in [23] and [3],
without examining whether and how particular arrangement of
icons in an array affects viewer perception [19, 57].

Figure 1: Risk theatre showing polling probabilities as seats
in a theatre. Fifty seats are randomly colored blue and fifty
seats are randomly colored red. Sitting in a blue seat repre-
sents the outcome that the Democratic candidate will win,
while sitting in a red seat represents the outcome that the
Republican candidate will win.

In the real-world, many designers tend to fill the grids in an or-
dered fashion, such as filling from the top or bottom (e.g., [40, 42]).
More recently, some data journalists have been using icon arrays
in the random arrangement, usually referred to as a ’risk theatre’,
to communicate projected U.S. election outcomes in order to help
people make a more informed decision about whether they should
go vote or not [29]. Some existing discussions have suggested that
it helps people better grasp the concept of uncertainty and form
a more accurate mental representation of the depicted probability
[46, 50]. The risk theatre shows polling probabilities as seats in a
theatre, as shown in Figure 1. These seats are randomly colored in
blue or red, in which a blue seat represents that the Democratic
candidate would win the election and a red seat represents that the
Republican candidate would win. The proportion of blue and red
seats corresponds to the likelihood of the Democratic and Republi-
can candidate winning the election. The viewer is typically asked to
imagine buying a ticket to the theatre. As they find their seat, sitting
in a blue seat represents the outcome that the Democratic candidate
has won, while sitting in a red seat represents the outcome that
the Republican candidate has won. This technique helps the viewer
“experience” the election outcome with a given probability, and
may change perceptions of seemingly small probabilities (e.g., a
15% chance of a candidate winning may seem less negligible when
presented as a risk theatre than numerically).

Our goal in this work is to systematically investigate if certain
spatial arrangements of filled icons can cause systematic over or un-
derestimation of probabilistic information. It would be undesirable,
for instance, if a key probability a designer tried to convey gets
overestimated or underestimated because the arrangement choice
had a biasing effect on the viewer’s perception. Understanding
(and countering) such potential biases will allow us to make rec-
ommendations to designers on how to arrange filled grids in their
icon arrays so their audiences can most accurately and confidently
extract the proportion value. This is especially crucial in circum-
stances where objective information can not be easily obtained or
where decisions have to be made rather quickly. For instance, a

patient may need to promptly consent to a medical procedure by
evaluating the associated risks presented as an icon array. In such a
case, it is imperative to design and present information in a manner
that minimizes the chance of misestimating risks and benefits.
Contributions:We contribute three empirical studies that investi-
gate the effect of arrangement in icon arrays on a viewer’s proba-
bility perception, creating a model that predicts perceptual bias in
icon arrays across various levels of probability values. We found
people to be very accurate in estimating proportions when viewing
the top, row, and diagonal arrangements; in contrast, they over-
estimated the depicted probabilities with the central arrangement
and underestimated them with the edge arrangement. People are
also biased to either overestimate or underestimate when viewing
the random arrangement depending on the objective proportions,
following a cyclical pattern consistent with existing findings in the
psychology literature [35, 58]. At the end of the paper, we propose
several design guidelines to help icon array designers arrange the
filled grids to most effectively communicate a probability value to
their readers.

2 RELATEDWORK
Icon arrays are often used in the medical domain for communicat-
ing the risk associated with medical procedures and treatments to
patients. Several existing studies investigated the utility and effec-
tiveness of icon arrays for communicating risk in comparison to
other visual and non-visual formats (e.g., [8, 31, 49, 59, 61]). Icon
arrays significantly increase patients’ gist (general impression) and
verbatim (specific numerical) understanding of the information
compared to textual narratives, such as the risk of nausea is “low”
[31, 59]. Empirical evidence has also shown that icon arrays outper-
form numerical representations of risk, such as the risk of nausea
is “10%” or “10 out of 100” [8, 49, 61], in particular for people with
low numeracy skills.

Prior studies have compared and contrasted the utility of icons
arrays for communication of risk with basic statistical graphs, in-
cluding line, bar, and pie charts [19]. One of the primary outcomes
of these studies is the different affordances of graphical formats for
risk communication. Line charts are the best for illustrating risk
trends, such as survival or mortality over time [52]. Similarly, bar
charts are suitable for comparing risks between different options
[64], and icon arrays are useful for helping people understand risk
in a general and precise way [28, 62, 64, 66]. Additionally, icon
arrays have also been shown to improve users’ trust in information
compared to other visual and non-visual forms of risk communica-
tion [31].

2.1 Number and Area Perception
When a viewer reads an icon array, how do they extract a percentage
value from it? The viewer could visually ‘count’ the number of
filled and unfilled icons and then mentally compute a ratio , or use
surrogate features such as the overall area or spatial frequency of
the filled icons among unfilled ones to make a rough estimate. The
answer to this question has been debated in the world of human
perception and cognition for many years [10, 43]. It is a challenging
question because perceiving numerosity (e.g., the number of items
in a set) naturally correlates with perception of features like area
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and spatial frequency [11, 25], so it is nearly impossible to tease
these two processes apart [43]. In icon arrays, for example, as the
number of filled icons increase, the amount of dark area increases,
and the spatial frequency of filled icons increases.

To resolve this debate, recent efforts have tried modeling nu-
merosity perception tasks with deep neural networks [60]. They
demonstrate that both numerosity perception and perception of
continuous magnitudes, such as density or area, play an important
part in these tasks, and in our process of making sense of our visual
environment in general. However, other studies have shown that
relying on features like area and spatial frequency rather than nu-
merosity is more automatic and less effortful when making number
estimations [43]. This is partly because our visual system is good
at quickly generating summary information about a collection of
objects [13, 48]. We can quickly retrieve the mean size or average
density of a collection of objects and use this information to ap-
proximate the number of objects in an area [5, 13, 45]. For example,
when asked to determine the number of circles in an area, our visual
system can quickly sample the average size of all the circles. We
can then calculate the approximate number of those circles that
would fit in the area to figure out the number of total circles. We
can also use the spatial frequency of the circles to make the same
approximation. The more circles are densely packed in an area, the
higher the total number of circles [10].

Despite the debate over the exact perceptual mechanisms at play
during number estimation, there is ample evidence suggesting that
at least one mechanism in number estimation involves the viewer
visually segmenting a display into sub-groups [16, 21]. Objects
sharing similar perceptual features (e.g. color or shape) tend to
be chunked together, and objects that are distinct in features tend
to be separated from others [30]. As a result, people’s number
estimation can be strongly influenced by whether similar objects
in the collection can be easily perceived as a group or not, and
how many perceivable groups there are in a collection of objects
[2, 21]. For example, a number estimation becomes lower when
nearby objects are viewed holistically as a unit [22, 27]. In the
“solitaire illusion” from [22], although there are the same number of
black and white circles, because the nearby black circles are viewed
holistically as a unit, the area occupied by black circles appears
bigger. As people rely on area as a surrogate feature to approximate
the number of black circles, they mistakenly think there are more
black circles than white circles.

In icon arrays, the way grids are filled and arranged can trigger
different visual groupings. For example, as shown in Figure 2, in
the first row, filling the array from top to bottom in the top ar-
rangement segments the icon array into two groups by color (black
on top, and white on the bottom). On the other hand, filling the
array with the row arrangement can create up to ten groups (5
groups of black and 5 groups or white). This suggests that different
arrangements can change the number of visual groups a viewer
sees, and thus the overall proportion estimations. If a viewer relies
on surrogate features like visual groups, area, or density to estimate
the number of filled grids in an icon array, they can also become
susceptible to visual inaccuracies or perceptual bias. For example,
people are not particularly accurate at comparing the ratio of two
areas [14]. They also tend to think objects that are regularly spaced
are more numerous than objects that are randomly spaced [26].

In addition, as the number of quantities to perceive increases, the
more imprecise our numerosity perception becomes [15]. Because
the number of perceivable groups in an icon array depends on the
objective probability it depicts (e.g., in the row arrangement shown
in Figure 2, showing 30% has 3 clusters of black but showing 10%
will only have 1), we hypothesize that arrangement will interact
with objective probability in icon arrays to influence probability
perception.

3 OVERVIEW OF EXPERIMENTS
In Experiment 1, we identified six icon array arrangements and
examined how these arrangements affect the way people perceive
proportion values. We sampled a subset of probability values to
test (e.g., 5%, 10%, etc.) and observed that, in general, participants
were more accurate in estimating proportions when viewing the
top, row, and diagonal arrangements, but tend to misestimate the
proportions when viewing the central, edge, and random arrange-
ments. In Experiment 2, we expanded the probability values we
tested to cover all the whole number values between 0% and 100%
to more systematically investigate the perceptual bias in the cen-
tral and edge arrangements. We reproduced the overestimation and
underestimation biases we observed in Experiment 1 and extended
our results to cover several variations of the central and edge ar-
rangement designs. In Experiment 3, we expanded the probability
values tested for the random arrangement and reproduced the mis-
estimation observed in Experiment 1. We also tested the robustness
of the effect with four aesthetic styles of icon arrays. We summarize
our research questions for each experiment below:
Experiment 1: How does icon array arrangement (i.e., the six
listed in Figure 2), affect people’s perception of proportion values?
Which arrangements warrant the most and least accurate propor-
tion estimates?
Experiment 2: What is the effect of centrality on people’s percep-
tion of proportion values? Specifically, how are people biased when
viewing icon arrays in the central and edge arrangement?
Experiment 3: How do people perceive randomly arranged icon
arrays? Do they use particular values as reference points in their
estimation? Does this bias generalize to other visual designs of icon
arrays?

4 EXPERIMENT 1 ARRANGEMENT EFFECTS
We begin with an investigation on how to visually arrange the
icons in an array to elicit a more accurate perception of proportions,
uncovering the potential perceptual biases associated with reading
icon arrays.

4.1 Design Motivation
Most icon arrays that researchers have studied tend to fill the grids
from the top or bottom (e.g., [3, 23]), as shown in the top row of
Figure 2. A few explored a random arrangement (e.g., [19, 57]), as
shown in the bottom row of Figure 2. However, there are many
other ways to fill grids in an icon array. [4] has additionally tested
icons with a central and edge arrangement, as shown in the second
and third row of Table 2, but only with one condition where the
icons depicted a 45% probability. To the best of our knowledge, no
existing work examines how people perceive probabilities depicted
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Top

Arrangement Description

Icons are filled starting from the top-left corner with no 

gaps between filled icons until the target proportion of 

black/white icons is reached. 

Edge Icons in the outer-most layer of the arrays are filled first, 

then the second layer, and so on until the target 

proportion of black/white icons is reached. 

Central This arrangement is the opposite of the edge 

arrangement, where priority is given to filling inner-most 

layer of icons and the filling spirals outwards. 

Diagonal Priority is given to fill icons diagonally, starting from the 

top-left corner until the target proportion of black/white 

icons is reached. 

Row Priority is given to filling alternate rows, starting from the 

top row until the target proportion is reached. Once every 

other row is filled, the previously skipped rows get filled. 

Random Icons are filled randomly until the target proportion of 

black/white icons is reached.

Examples

10 20 30 40 50 60 70 80 90

Figure 2: Six icon array arrangements used in Experiment 1, representing proportions from 10% to 90%.

by these arrangements across a wide range of objective probabilities.
Additionally, there exist many other ways to arrange filled grids
in icon arrays. To explore additional possibilities in this space, we
conducted a pilot survey with students enrolled in an introductory
data visualization class at the University of Massachusetts Amherst.
We provided them with 6x8 arrays of white grids and asked them
to fill in the grids to represent a proportion. The authoring team
extracted key features from the student drawings and reflectively
synthesized them, along with arrangements explored in existing
studies, into six categories of common arrangements, as shown in
Figure 2. These configurations will serve as a starting point for our
investigation on the effect of icon array arrangement on perceived
proportions. See our supplementary materials for the students’
response.

4.2 Participants
Forty-nine undergraduate students from Northwestern University
participated in the experiment in exchange for course credit in an
introductory psychology class. Due to health and safety concerns,
participants were sent a link to the experiment via Qualtrics [51]
to complete the survey at home. Although this means that the size
of the icon arrays participants viewed for the study might have
varied due to the different machines on which they completed the
study, earlier work (e.g., [32]) has demonstrated the viability of
crowdsourcing graphical perception studies online, where partici-
pants engaged with the studies using screens with varying sizes,
by reproducing results of prior laboratory experiments.

4.3 Experimental Stimuli and Design
We generated icon arrays following the six arrangements from
Figure 2. The icon arrays of 10×10 grids are presented on a 720 by
720 pixel white background. Every grid has a grey outline and can

be either filled (black) or unfilled (white). The number of filled grids
represents proportion values, which range between 0% and 100%.

To keep the experiment lengthmanageable, we pre-generated the
icon arrays showing varying proportions for all six arrangements.
Specifically, we covered the multiples of ten in the range from 0% to
100%, such as 10%, 20%, 30%, and 40%. We also covered the quartiles
(25% and 75%), as well as boundary cases (5% and 95%). Because past
work has demonstrated that people’s perception tends to be extra
susceptible to bias near the 50% mark, we added extra conditions
to cover that range (45% and 55%). Additionally, recent work has
found that people may be susceptible to rounding biases, preferring
to make numerical estimates in perception tasks that end with 5’s
and 10’s [12]. Therefore we also included conditions that ended on
other numbers, specifically, 12%, 18%, 32%, 38%, 72%, 78%, and 92%.
In total, we generated 132 icon arrays with 6 arrangements × 22
proportions.

4.4 Procedure
Participants started the experiments with a short introduction to
the task and several practice trials. Every participant completed 132
trials for the experiment. For each trial, participants were presented
with one icon array on the screen for one second, and then they
were prompted to estimate the percentage of filled grids in the
icon array via an uninitialized slider ranging from 0 to 100. They
could change their response by dragging the slider handle and the
value selected on the slider was displayed above the slider. The
participants were also prompted to report how confident they were
in their estimation on a similar slider ranging from 0, which means
not at all confident, to 100, which means extremely confident. The
time to respond was unlimited, and the participant proceeded to
the next trial by clicking a ‘next’ button after they reported their
confidence.
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4.5 Results
Following procedures in similar perception-based studies with vi-
sualizations, we filtered for quality of responses by excluding the
trials where the participant made an estimation with an error that is
more than two standard deviations away from the mean estimation
error. This left us with 94.88% of the responses. Overall, the average
estimation error considering all trials was 0.67 (SD = 6.26, out of
100).

4.5.1 Proportion Estimation. Participants were generally accurate
in their estimates of the objective probabilities presented via the
icon arrays. Overall, as shown in Figure 3, considering the entire
spectrum of objective probabilities tested, the participants were
the most accurate in their estimation when the icon arrays were
presented in the top and row arrangement. They were the least
accurate when the icon arrays were presented in the edge arrange-
ment, followed by the random and the central arrangements. We
constructed a within-subject ANOVA to compare the overall esti-
mation error for the six arrangement types (F (5, 240) = 44.05, p <
0.001). Post-hoc pair-wise comparisons with Bonferroni’s adjust-
ment suggests that all pair-wise comparisons of estimation error
within the six arrangement types are significantly different, except
the top and the row arrangement pair (p = 1.00), the top and the
diagonal pair (p = 0.27), and the diagonal and the row pair (p = 0.20).
More details can be found in the supplementary materials.

Participants also had a tendency to overestimate or underes-
timate depending on the icon array arrangement type and the
objective probability. As shown in the line plots in Figure 3, partici-
pants overestimated most of the probability values when they were
presented with the central arrangement (Merror = 1.89, SEerror =
0.23). The trend for the overestimation peaked when the objective
probability is near 50 percent.

They mostly underestimated the probabilities in the edge ar-
rangement (Merror = -2.96, SEerror = 0.25), and the random ar-
rangement (Merror = -1.94, SEerror = 0.25), as shown in Figure 3.
For the edge arrangement, the pattern of estimation error appeared
to be a mirror image of that in the central arrangement, with the
underestimation peaking near 50 percent objective probability. For
the random arrangement, the pattern of estimation error appeared
more cyclical. The underestimation peaked near 40 percent objec-
tive probability, and the estimation error seemed to have shifted to
an overestimation near 80 percent.

Participants also slightly underestimated the probabilities in
the diagonal arrangement (Merror = -0.86, SEerror = 0.18), the
top arrangement (Merror = -0.21, SEerror = 0.10), and the row ar-
rangement (Merror = -0.19, SEerror = 0.13). But overall, for these
arrangements, participants were accurate in their probability esti-
mations.

4.5.2 Estimation Confidence. A within-subject ANOVA revealed
that participants reported their probability estimationswith varying
levels of confidence depending on both the icon array arrangement
and the objective probability (F (5, 240) = 111.2, p < 0.001). As shown
in Figure 3, participants were more confident when the objective
probability was near 0 and 100 percent, and less confident when
the objective probability was near 50 percent. Overall, participants
were the most confident in their probability estimates when they

viewed icon arrays in the top and row arrangements, and the least
confidence when they viewed the random arrangement. Post-hoc
pair-wise comparisons on the overall confidence levels with Bon-
ferroni’s adjustment suggest participants’ confidence levels to be
significantly different for every icon array pairs (p < 0.001), except
the top and row arrangement pair (p = 1.00), the edge and diagonal
pair (p = 0.25), the central and diagonal pair (p = 0.42), and the
central and edge pair (p = 0.001). More details can be found in the
supplementary materials.

How does reporting confidence relate to estimation error? We
constructed a linear regression model predicting the absolute value
estimation error with participants’ reported confidence, and found
that confidence and estimation error were negatively correlated
(Est = -0.080, t = -41.29, p < 0.001, R2ad j = 0.21). This suggests that
participants seemed to have a good intuition about their estima-
tions. They were more confident when their estimations were more
accurate.

4.5.3 Potential Confounding Variables. As a sanity check, we ex-
amined whether the order in which participants viewed the icon
arrays affected the amount of estimation error they made. A lin-
ear regression model predicting estimation error with the order
in which the icon arrays were displayed suggests that there is no
evidence of order effects on estimation errors (Est = 0.002, t = 1.14,
p = 0.25, R2ad j < 0.001). However, order seemed to have a significant
effect on participants’ reported confidence (Est = 0.07, t = 7.80, p
< 0.001, R2ad j = 0.0092), such that participants became more and
more confident in their estimations as they progressed through the
experiment.

We also examined whether our participants’ ability to estimate
probabilities varied with their age, research experience, and visual
literacy (measured via the ten subjective questions from [24]). On
average, our participants had 1.53 years of research experience (SD
= 2.24) and they reported an average score of 42.7 out of 60 on the
subjective visual literacy survey (SD = 6.83).

A linear regression model predicting estimation error with age,
research experience, and visual literacy score suggested age (Est =
0.16, t = 2.72, p = 0.006) and visual literacy scores (Est = 0.10, t =
3.58, p < 0.001) to be significant factors, but we did not observe an
effect of research experience (Est = 0.01, t = 0.39, p = 0.69). Older
participants and participants with higher visual literacy scores
tended to make more estimation errors. Although age, research
experience, and visual literacy scores are statistically significant
predictors to estimation error, their effect sizes are extremely small
(η2aдe = 0.001, η2r esearch < 0.001, η2l iteracy < 0.001, overall R2ad j =
0.0015). We conducted a similar linear regression examining the
effect of these factors on participants’ reported confidence. All three
factors were significant predictors, but again with small effect sizes
(η2aдe = 0.03, η2r esearch = 0.01 , η2l iteracy = 0.07 , overall R2ad j = 0.11).
Older participants (Est = 4.06, t = 14.97, p < 0.001), participants with
more research experiences (Est = 0.80, t = 4.93, p < 0.001), and
participants with higher reported visual literacy (Est = 1.14, t =
21.62, p < 0.001) tended to be more confident in their estimations.

However, considering that all of our participants were undergrad-
uate students, the narrow range in their age, research experience,
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Figure 3: Top: Average estimation error as a function of the number of filled grids in an icon array for the six arrangements,
and on the right, the overall estimation error for the six arrangements aggregating all levels of objective probabilities. Bottom:
Average reported estimation confidence as a function of the number of filled grids in an icon array for the six arrangements,
and on the right, the overall confidence for the six arrangements aggregating all trials. Error bars show standard error.

and visual literacy scores may limit the generalizability of these
findings.

4.6 Discussion and Motivation for Exp 2 and 3
How filled grids are arranged within an icon array significantly
influences people’s perception of depicted probabilities. Participants
were generally accurate in their estimations when icon arrays were
in the row, top, and diagonal arrangements, but were biased when
the icon arrays were presented in the central, edge, and random
arrangements.

For the central and edge arrangements, participants consistently
overestimated the proportions in the central arrangement and un-
derestimated the proportions in the edge arrangement. This obser-
vation is consistent with the centrality effect observed in [4], where
participants viewed a 5×8 matrix of 18 blue and 22 red squares.
They underestimated the percentage of blue squares when the blue
squares were placed in the middle of the matrix (similar to our
central arrangement), and overestimated the percentage of blue
squares when the blue squares were placed on the edge (similar to
our edge arrangement). Our results demonstrate that this overesti-
mation and underestimation bias seems to generalize beyond just
the one scenario tested in [4]. Additionally, when we generated the
stimuli in Experiment 1, we recognized that there are many ways to
arrange icon arrays even within the broader definition of ‘central’
and ‘edge’ arrangements, as shown in Figure 4. The generalizability
of this centrality effect, considering the potential randomness in
arranging filled icons in the central and edge arrangements, has

not been explored. In Experiment 2, we systematically study this
effect of centrality with icon arrays across a range of values, adding
randomness to patterns in each icon array.

For icon arrays in the random arrangement, we observed a clear
cyclic bias pattern for estimation errors that is not present in the
other arrangements. Participants in our experiment seemed to un-
derestimate proportions closer to 40% and overestimate proportions
close to 80%. This observation is consistent with existing findings in
human perception research that contributed to the development of
Steven’s Power Law [58] and the cyclical power model [35], which
suggest a non-linear relationship between the perceived stimulus
value and the actual stimulus value. Usually, smaller values tend to
be overestimated, while bigger values tend to be underestimated,
creating a one-cycle bias pattern in value estimations [53, 55]. Re-
cent work has demonstrated that when participants use a reference
point in their value estimations, a repulsion effect can occur such
that the estimations are perceived to be farther from that reference
point [44]. This effect turns the one-cycle bias pattern into a re-
peating, multiple-cycle bias pattern where values slightly smaller
than the reference point are treated similarly to ‘large’ values and
get underestimated, and values slightly larger than the reference
point are treated similarly to ‘small’ values and get overestimated.
In Experiment 1, while the proportion estimation for the random
arrangement does follow a cyclical pattern, because we only tested
a limited number of objective proportions, it is unclear whether
participants were using any reference points and how their bias
pattern compare exactly to existing work in similar domains. This
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motivated us to conduct Experiment 3, where we took a deeper
dive into investigating how people perceive random arrangements
of icon arrays and what factors might play a role in biasing their
proportion judgement.

5 EXPERIMENT 2 CENTRALITY EFFECTS
While the results from [4] suggest that centrality can have a large
effect on perceived proportion, their experiments only tested two
patterns — those in which focal squares are placed in the extreme
edge or extreme center, and only for one proportion (45%). In this
experiment, we systematically explored 101 proportions at four
levels of centrality, as shown in Figure 4. We did this by considering
random square grids generated from a Gaussian distribution over
locations centered in the middle of a 10×10 grid. Specifically, the
probability that any particular grid location is populated is given
by

pi j ∝ exp
(
−d2i j/2σ

2
)

(1)

where di j is the Euclidean distance from the center of a square to
the middle of the grid and σ 2 is a free parameter, which we refer to
as the scale. Given a scale parameter and the proportion of squares
to populate, we sample square locations without replacement from
this distribution. Small values of the scale parameter result in high
centrality grids (see the top row of Figure 4), with squares clustered
towards the middle, whereas large values of the scale parameter
produce grids that are populated uniformly at random (see the bot-
tom row of the top panel in Figure 4). We use the same distribution
to produce grids with extremely low centrality (squares on the edge)
by repeating this procedure to sample unpopulated (rather than
populated) square locations.

Figure 4 shows a subset of the results of this procedure for dif-
ferent proportions and scales. The top half of the figure shows the
central arrangement icon arrays, and the bottom half shows the
edge arrangement icon arrays. We selected four scale values to test
(σ 2 = 2.0, 3.5, 5.0, 6.5), covering a wide range of possible centrality,
as represented in each row. Within each arrangement, the top row
has the highest centrality (σ 2 = 2.0) and the bottom row has the
lowest centrality (σ 2 = 6.5). The far left column contains empty
icon arrays representing 0% objective probability, the next column
contains icon arrays with 5 filled squares representing 5% objective
probability, and so on. This provides a convenient way to interpo-
late between grids whose squares are concentrated in the center
of the grid or towards the edges. Notice that icons with a very low
or very high number of grids filled tend to look more similar as
centrality is small at those values. In total, we generated 101 central
arrangement and 101 edge arrangement icon arrays for each of the
scale values, one for each of the whole number percentage values
from 0 to 100, totaling 808 stimuli used. These icon arrays were
presented on a 1024 by 600 pixel light gray background, just like
the icon arrays in Experiment 1.

5.1 Participants and Procedure
We recruited 800 participants using Amazon Mechanical Turk
(MTurk), a popular micro-task market that is regularly used for
online experiments with human participants. We implemented our
experiment as web applications hosted on a server external to
MTurk. Participants accessed the experiments within an embedded

frame presented on the MTurk site. We limited the participant pool
to workers who are located in the United States with a minimum
95% approval rate and at least 100 approved tasks.

Participants carried out the task in four steps. They were first
presented a description of the task with an option of accepting
it. Once the task was accepted, participants completed a training
session in which they were asked to estimate the proportion values
of 25% and 75% in a sequence of two tasks. The order of the tasks
was randomized for each participant. Participants were given feed-
back on the accuracy of their responses. After the training session,
participants were randomly asked to estimate 25 randomly selected
icon arrays from our 808 stimuli (a subset shown in Figure 4) in a
sequence of tasks. They were paid for 0.75 USD per task.

For each icon array, participants were asked to estimate the
proportion value represented, which was made difficult by the fact
that it only appeared on the screen for a short amount of time.
Similar to that in Experiment 1, they responded by clicking on an
uninitialized slider. Participants could change their response by
dragging the slider handle and the value selected on the slider was
also shown under the slider. Before each stimulus was shown, a
white cross centered in the stimulus area appeared for 2 seconds
to drive the participant’s attention followed by the presentation of
the stimulus. We omitted the confidence measure as Experiment
1 has demonstrated that confidence tends to positively correlate
with estimation accuracy.

5.2 Results
We filtered responses that were off by more than 15% (which is
approximately two standard deviations away from the mean esti-
mation error) and were left with 17,514 responses (87.57% of total
responses). Overall, a within-subject ANOVA comparing the effect
of arrangement and centrality scale (σ 2) on estimation error sug-
gests there to be a significant main effect of both arrangement (F =
95.24, p < 0.001) and centrality scale (F = 5.16, p = 0.023). Partici-
pants tended to overestimate the objective probability when they
viewed icon arrays with the central arrangement (Merror = 0.96,
SEerror = 0.059), and underestimate the objective probability when
they view icon arrays with the edge arrangement (Merror = -0.72,
SEerror = 0.057), supporting results from Experiment 1. Overall, for
the central arrangement, the overestimation seems to peak when
the objective probability is around 60 to 70 percent. For the edge
arrangement, the underestimation seems to peak around 30 to 50
percent.

For the main effect of centrality scale, we found that the higher
the scale value, which means the more ‘random’ the arrangement
appears, the lower the participants’ estimation error. A post-hoc
linear regression revealed that with a one unit increase in scale
value, the estimation error decreases by 0.053 (SE = 0.02487, p =
0.033). We can also see this in Figure 5. From left to right, the
vertical distance between 0 (no estimation error) and the lines
representing estimation error decreases, signifying less error as the
scale increases.

There is also a significant interaction between arrangement and
centrality scale (F = 40.36, p < 0.001), as shown in Figure 5. With
high centrality scale (σ 2 = 2.0), the central and edge arrangement
looked more dissimilar and the patterns of participants’ estimation
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Figure 4: Icon arrays with varying centrality across a range of probability values. Each column shows icon arrays depicting a
fixed probability value (0%, 5%, 10%, ...), with varying centrality in each row. Centrality is the highest on the top row and the
lowest on the bottom row.
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Figure 5: Average estimation error for central and edge arrangements at four levels of centrality (scale = 2.0, 3.5, 5.0, 6.5), across
varying levels of probability values. Example icon arrays are shown on top at 45% for central and edge arrangements.

error appeared more distinct (see the left most panel in Figure 5).
There is a consistent overestimation in the central arrangements
and underestimation in the edge arrangements for most levels of
objective probabilities. With low centrality scale (σ 2 = 6.5), both
the central and edge arrangements start to look more similar to a
random arrangement, and participants begin to exhibit similar bias
patterns with that of viewing a random arrangement. The estima-
tion error follows a more cyclical pattern, with underestimation in
the range of 20 to 60 percent, overestimation in the range of 60 to
80 percent, and underestimation thereafter.

5.3 Discussion
Experiment 2 reproduced the biased pattern in probability estima-
tions for the central and edge arrangement found in Experiment
1 and revealed that centrality plays an important role biasing our
perception of probabilities in icon arrays. People overestimate prob-
abilities in the central arrangement and underestimate probabilities

in the edge arrangement, and these misestimations can be under-
stood as centrality effects such that higher centrality scale (e.g.,
when σ 2 = 2.0) will lead to more overestimation and underestima-
tion. We also observed that when centrality scale is low (e.g., when
σ 2 = 6.5), the icon arrays in the central and edge arrangement begin
to resemble the random arrangement, and participants’ estimates
begin to follow a similar cyclical pattern. This additionally supports
our findings from Experiment 1, and is consistent with existing
findings in the psychophysics literature [35, 58].

6 EXPERIMENT 3 RANDOM ARRANGEMENT
Following the discussion at the end of Experiment 1 and 2, we now
conduct a systematic investigation of probability perception with
icon arrays in the random arrangement to refine the perceptual bias
pattern we observed in Experiment 1 and Experiment 2. This inves-
tigation also helps us identify potential strategies that participants
use to make proportion estimations, such as whether they were
using particular values as reference points [44]. As mentioned in
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the previous sections, according to Steven’s Power Law [58], people
tend to overestimate small values (e.g., probabilities close to 0) and
underestimate large values (e.g., probabilities close to 100), creating
a cyclical, biased pattern of perception. But if they are using addi-
tional values as reference points, the cyclical bias pattern will reset
itself at the reference point, treating values slightly smaller than the
reference point as ‘large’ values and values slightly bigger than the
reference point as ‘small’ values. For example, if people are using
the 50% mark as a reference point to make probability estimates in
icon arrays, we should see them underestimating values slightly
below 50, and overestimating values slightly above 50.

We additionally tested the robustness of this perceptual bias
across various visual styles of icon arrays. This will help us better
understand how much this effect generalizes depending on the
particular visual settings we chose in our stimulus design. We tested
four visual styles: large grids, medium grids, medium grids with
light shading, and small grids, as shown in Figure 6.

6.1 Participants, Stimuli, and Procedure
We recruited 800 workers from Mechanical Turk following the
same inclusion criteria as in Experiment 2, randomly assigning 200
participants to each of the four style conditions. Similar to that in
Experiment 2, each worker was asked to estimate the proportion of
grids filled in 25 randomly selected icon arrays. Again, as quality
control, we eliminated responses that were off by more than 15%.
For the 20000 responses we received, 17766 were retained (88.83%).

We generated icon arrays in the random arrangement and pre-
sented them on a 1024 by 600 pixel light gray background. Similar
to that in the previous experiments, we generated icon arrays on a
white background, divided into square cells with a regular grid of
gray colored lines. The cells were filled by drawing colored squares
centered in a cell to represent probabilities. The new manipulation
for this experiment is the visual styles, which included large grids,
medium grids, medium grids with light shading, and small grids,
as shown in Figure 6. The objective proportion values shown with
these icon arrays were uniformly sampled from 0% to 100%. In total,
we generated 101 icon arrays for each visual style, one for each of
the whole number percentage values from 0 to 100, totaling 404
stimuli used.

6.2 Results
Figure 6 shows participants’ estimations across the four visual styles.
While some variation existed across styles, the cyclical-pattern of
bias seemed robust to the superficial changes we tested, suggest-
ing that this perceptual bias is mostly driven by the perception of
randomly arranged icon arrays themselves. On average, the esti-
mation error participants made for the four visual styles is very
similar:Mlarдe = -0.086 (SE = 0.076),MmediumDark = 0.25 (0.080),
MmediumLiдht = -0.31 (0.080), andMsmall = 0.32 (0.084). A within-
subject ANOVA comparing estimation error between these four
visual style supports this observation. Although there exists a small
main effect of visual style on estimation error (F (3, 17754) = 8.39, p
< 0.001, η2 = 0.0014), there is no evidence of an interaction effect
between visual style and objective probability (F (3, 17754) = 0.80, p

= 0.49). This suggests that the overall trends in estimation error var-
ied slightly between different visual styles but is preserved across
varying levels of objective probabilities.

As expected, in our ANOVA, we also observed a main effect
of objective probability on estimation error (F (1, 17754) = 112.31,
p < 0.001, η2 = 0.0063). As shown in Figure 6, overall, there was
a slight overestimation in the probability from 0 to 20 percent,
transforming into a considerable amount of underestimation in the
region between 20 and 60, returning back to overestimation around
60 to 90, and ending with a slight underestimation in the range 90
to 100.

6.3 Discussion
Based on Steven’s Power Law, we know that when people tend to
follow a cyclical bias pattern in their estimation errors [53, 55, 58].
However, recent work has demonstrated that the smaller and bigger
values are relative. Depending on whether participants are using
additional values as reference marks, this cyclical pattern could
repeat itself around the reference marks [44]. In estimations of
proportions in a stacked bar chart, for example, participants often
use the 0%mark, the 50%mark, and the 100%mark as their reference
points, so they overestimate values slightly above 0 and slightly
above 50, and underestimate values slightly below 50 and slightly
below 100, creating a two-cycle pattern [44].

Our results suggest that when participants estimate probabilities
with icon arrays in the random arrangement, they tend to use 0%
and around 60% as a reference point. They overestimate values
slightly above 0 and slightly above 60, and underestimate values
slightly below 60 and slightly below 100, following similar cyclical
patterns identified in [44] and [35].

7 GENERAL DISCUSSION AND CONCLUSION
In this work, we report a bias in the perception of icon arrays that
causes people to misestimate proportions. Both the visual arrange-
ment of filled grids (e.g., top, row, central) and the objective prob-
abilities (e.g., 5%, 20%, 85%) have an effect on people’s estimation
accuracy. Across all levels of objective probabilities, participants
were fairly accurate in estimating proportions when viewing the
top, row, and diagonal arrangements. However, they overestimated
the proportions with the central arrangement and underestimated
the proportions with the edge arrangement, with their overestima-
tion peaking around 60% and their underestimation peaking around
40%. They were also biased to either overestimate or underestimate
when viewing the random arrangement depending on the objective
proportions, following a cyclical pattern consistent with existing
findings in the psychophysics literature. More specifically, they
underestimate proportions in the range of roughly 20% to 60% and
90% to 100%, and overestimate proportions in the range of roughly
0% to 20% and 60% to 90%. The bias seems related to, but not fully
explained by, biases in proportion perception grounded in Steven’s
Law [35, 53].

Experiment 2 demonstrates that centrality is in fact a powerful
lever in manipulating perceived probabilities across a wide range
of values. So much so, in fact, that extreme centrality grids can
reverse the perceptual effects seen in randomly populated grids.
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Figure 6: Average error as a function of the depicted probability values, for the four visual styles. All icon arrays tested are in
the random arrangement.

For example, in Experiment 1 and Experiment 3, the random ar-
rangement containing 45 filled grids is consistently underestimated,
but in Experiment 2, the highly central grids with 45 black squares
are consistently overestimated, though this effect becomes weaker
and weaker as centrality decreases. Experiment 2 also shows that
the relationship between perceptual bias and centrality is highly
non-linear and complicated. The source of this non-linearity re-
mains unclear. While it could arise from centrality effects alone, it
is also possible that there are other visual and perceptual features
coupled to centrality and proportion that drives perceptual bias.

8 LIMITATIONS AND FUTURE DIRECTIONS
We identify several limitations that provide promising future re-
search directions based on our three experiments. Why did we
observe different patterns of perceptual bias depending on the ar-
rangements? We tested the specific effect of centrality and found
that centrality plays a part in biasing people’s probability estima-
tions. However, we have yet to explore why the central and edge
arrangements trigger completely opposite bias patterns such that
people underestimate probabilities with one and overestimate with
the other. Additionally, while the cyclical patterns we observe in
probability estimations with the random arrangement seem consis-
tent with existing psychophysics literature, the actual driver of this
pattern is less well understood. Hollands and Dyre suggest it may
arise from participants alternating between different perceptual
estimation strategies (e.g., switching from using area to number
encoding) from trial to trial, but admit that “[t]his explanation, is,
of course, ad hoc” (p.518) [35]. Future work at the intersection of
visualization and human perception research could further investi-
gate what perceptual or cognitive mechanisms are in play to create
this cyclical bias pattern in probability estimation. Furthermore,
we also observed that participants were almost equally as accurate
estimating probabilities in the top, row, and diagonal arrangements,
despite their visual differences. What strategies were participants
using when they estimated probabilities in these arrangements that
made them more accurate? Future work can extend our investiga-
tion to explore these strategies people use and uncover the factors
that lead to more accurate probability estimations.

Future work can also test a wider set of icon array arrangements
beyond the six identified in our approach. In the real world, visu-
alization designers can get very creative with how they arrange
icons in an icon array to convey key statistics (for some examples,

see [9]), so the effectiveness of less intuitive, less commonly seen
arrangements should also be tested. Additionally, following our
discussion in Section 2.1, we suspect other visual factors that can
affect visual attention and visual grouping, such as color, shape,
and spacing between icons, can also influence probability percep-
tion. Visualization designers in the real-world often leverage these
visual features to make the key message stand out or the visualiza-
tion more engaging, such as coloring icons a salient color or using
a unique icon shape [1, 6, 54]. So it’s critical for future work to
also explore the effect of these other visual features on probability
estimations in icon arrays.

We used a grid of 100 squares for all three studies to make our
results more conservative. Participants may have an easier time es-
timating the probabilities when the total number of icons remained
a fixed, prototypical number, such that each icon represents exactly
1%. We suspect people may be even more prone to perceptual biases
when they estimate probabilities in icon arrays with a less proto-
typical number of total icons, such as 25 or 70 icons. Further, it is
common for visualization designers to use an irregular number of
icons to convey a key probability in the real world, so future work
could test how these results might change with more or less-dense
icon arrays.

Additionally, in our current experiment, we asked participants
to report the percentage they perceived by moving a slider with
number labels. Some participants might have mentally counted the
number of filled icons and then reported that number in a straight-
forward fashion. Others might have relied on forming a mental
representation of the icon array using surrogate visual features
like area and density. These participants then have to translate
that visual information into verbal information. Existing work in
cognitive psychology has shown that a viewer who is forced away
from thinking about area into thinking about numbers tends to mis-
perceive that numeric quantity [7, 37]. Recent work has also shown
that translating visual information to verbal information might
introduce bias and inaccuracies in value reporting [12]. In addition
to investigating participants’ strategies when making probability
estimations, researchers could also test out other experimental
setups to record the participants’ probability estimates in a way
that doesn’t force the participants into switching between thinking
about numbers and area, such as asking the participants to compare
two icon arrays and report which one portrays a higher probability.
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See [17] for some alternative experimental setups future researchers
can use.

Future work can also apply neural network techniques to train
networks on a wide variety of icon arrays and proportion estimates.
Researchers can use these trained networks to identify potential
causes of perceptual biases by extracting systematic regularities
between the icon arrays shown and people’s proportion estimates,
which enables them to generate icon arrays that should be perceived
veridically. For example, we showed that manipulating centrality,
which is the distance of the focal icons from the center of the grid,
can change probability estimates. A neural network can help us
quantify this effect by learning the features of an icon array that
leads to similar and dissimilar human responses from viewing an
icon array with varying centrality.

9 IMPLICATIONS FOR DESIGN
In this paper, we identified six icon array arrangements and sys-
tematically tested how they affected probability perception. It’s
clear that how filled grids are spatially arranged in an icon array
significantly impacts viewer perception. One solution based on this
work is to explicitly annotate the percentage depicted in the icon
arrays to reduce perceptual biases. We also encourage visualization
designers to use the data collected in our work as a reference tool
to help them predict how a viewer might react to an icon array
design. Below we discuss several recommendations for icon array
designers to consider in their work.

Presenting icon arrays with top or row arrangements will help
viewers confidently make the most accurate probability estimations.
Presenting icon arrays with the diagonal arrangements will achieve
a similar effect in terms of perceptual accuracy, but the viewer is
likely much less confident about their estimations. In scenarios
where the designer requires the viewer to make a prompt and
accurate decision with some probabilistic information, regardless
of the probability value, it’s better to present them with icon arrays
in the top or row arrangement.

On the other hand, presenting icon arrays with the central ar-
rangement makes a viewer overestimate the probability, and pre-
senting icon arrays with the edge arrangement makes a viewer
underestimate the probability. For example, a patient looking at an
icon array in the central arrangement depicting a 60% probability of
having an allergic reaction might be more stressed than they would
actually be, because they likely overestimated that 60% to be closer
to 70%. A patient looking at an icon array in the edge arrangement
depicting a 45% probability of risk might be more optimistic than
they would want to be, because they likely underestimated that
45% to be closer to 40% risk.

As for the random arrangement, we demonstrate that using a risk
theatre, where filled grids are randomly arranged to help people
better grasp the concept of uncertainty [46, 50], may be at the
expense of sacrificing perceptual accuracy and confidence, despite
its other merits. People are biased to overestimate or underestimate
the probability depicted in an icon array with random arrangement
depending on the objective probability, perceiving it to be higher
in the 0 to 20 and 60 to 90 percent range, and lower in the 20 to 60
and 90 to 100 percent range. So in the context of communicating a
projected election outcome, say a Democratic candidate has a 70%

chance of winning, a voter looking at the risk theatre depicting that
70% chance will perceive it to be higher, at around 75% chance. This
difference in perceived probability and actual probability might
mean the difference between going to vote or not going to vote.

We also discovered that when people make proportion estimates
in icon arrays, they tend to use the 60%mark as their reference point.
As a result, they are the most accurate when perceiving probabilities
around 60%. Although further investigation with regards to why
people might be using the 60% mark as reference is warranted,
when designing an icon array to communicate a key probability
value, it might be worthwhile to transform that key probability
value to be around 60%. For example, in a competition between
A and B, instead of presenting a prediction of the outcome using
an icon array that depicts “a 40% chance of A winning”, viewers
are more likely to perceive the probability more accurately if the
outcome is presented as “a 60% chance of B winning”.

In summary, we recommend that icon array designers consider
how their audience will perceive the probabilities depicted in their
designs and weigh the trade-off between perceptual accuracy and
other design goals.

REFERENCES
[1] Kiran Ajani, Elsie Lee, Cindy Xiong, Cole Nussbaumer Knaflic, William Kemper,

and Steven Franconeri. 2021. Declutter and Focus: Empirically Evaluating Design
Guidelines for Effective Data Communication. IEEE Transactions on Visualization
and Computer Graphics (2021).

[2] Jüri Allik and Tiia Tuulmets. 1991. Occupancy model of perceived numerosity.
Perception & Psychophysics 49, 4 (1991), 303–314.

[3] Jessica S Ancker, Yalini Senathirajah, Rita Kukafka, and Justin B Starren. 2006.
Design features of graphs in health risk communication: a systematic review.
Journal of the American Medical Informatics Association 13, 6 (2006), 608–618.

[4] Eduardo B Andrade. 2011. Excessive confidence in visually-based estimates.
Organizational Behavior and Human Decision Processes 116, 2 (2011), 252–261.

[5] Dan Ariely. 2001. Seeing sets: Representation by statistical properties. Psycholog-
ical science 12, 2 (2001), 157–162.

[6] Scott Bateman, Regan L Mandryk, Carl Gutwin, Aaron Genest, David McDine,
and Christopher Brooks. 2010. Useful junk? The effects of visual embellishment
on comprehension and memorability of charts. In Proceedings of the SIGCHI
conference on human factors in computing systems. 2573–2582.

[7] Ty W Boyer and Susan C Levine. 2015. Prompting children to reason proportion-
ally: Processing discrete units as continuous amounts. Developmental psychology
51, 5 (2015), 615.

[8] Jacquelyn Burkell. 2004. What are the chances? Evaluating risk and benefit infor-
mation in consumer health materials. Journal of the Medical Library association
92, 2 (2004), 200.

[9] Alyxander Burns, Cindy Xiong, Steven Franconeri, Alberto Cairo, and Narges
Mahyar. 2021. Designing with Pictographs: Envision Topics without Sacrificing
Understanding. IEEE Transactions on Visualization and Computer Graphics (2021).

[10] David Burr and John Ross. 2008. Response: visual number. Current Biology 18,
18 (2008), R857–R858.

[11] Lisa Cantrell, Megumi Kuwabara, and Linda B Smith. 2015. Set size and culture
influence children’s attention to number. Journal of Experimental Child Psychology
131 (2015), 19–37.

[12] Cristina R Ceja and Cindy Xiong. 2021. Show or Tell? Visual and Verbal Repre-
sentations Bias Position Recall. arXiv preprint arXiv:2108.08407 (2021).

[13] Sang Chul Chong and Anne Treisman. 2003. Representation of statistical proper-
ties. Vision research 43, 4 (2003), 393–404.

[14] William S Cleveland and Robert McGill. 1984. Graphical perception: Theory, ex-
perimentation, and application to the development of graphical methods. Journal
of the American statistical association 79, 387 (1984), 531–554.

[15] Stanislas Dehaene. 2011. The number sense: How the mind creates mathematics.
OUP USA.

[16] Stanislas Dehaene and Jean-Pierre Changeux. 1993. Development of elementary
numerical abilities: A neuronal model. Journal of cognitive neuroscience 5, 4 (1993),
390–407.

[17] Madison A Elliott, Christine Nothelfer, Cindy Xiong, and Danielle Albers Szafir.
2020. A Design Space of Vision Science Methods for Visualization Research. IEEE
Transactions on Visualization and Computer Graphics 27, 2 (2020), 1117–1127.



CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Cindy Xiong, Ali Sarvghad, Çağatay Demiralp, Jake M. Hofman, and Daniel G. Goldstein

[18] Angela Fagerlin, Brian J Zikmund-Fisher, and Peter A Ubel. 2011. Helping patients
decide: ten steps to better risk communication. Journal of the National Cancer
Institute 103, 19 (2011), 1436–1443.

[19] Deb Feldman-Stewart, Nancy Kocovski, Beth A McConnell, Michael D Brundage,
and William J Mackillop. 2000. Perception of quantitative information for treat-
ment decisions. Medical Decision Making 20, 2 (2000), 228–238.

[20] Michael Fernandes, Logan Walls, Sean Munson, Jessica Hullman, and Matthew
Kay. 2018. Uncertainty displays using quantile dotplots or cdfs improve transit
decision-making. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. 1–12.

[21] Steven L Franconeri, Douglas K Bemis, and George Angelo Alvarez. 2009. Number
estimation relies on a set of segmented objects. Cognition 113, 1 (2009), 1–13.

[22] Christopher D Frith and Uta Frit. 1972. The solitaire illusion: An illusion of
numerosity. Perception & Psychophysics 11, 6 (1972), 409–410.

[23] Mirta Galesic, Rocio Garcia-Retamero, and Gerd Gigerenzer. 2009. Using icon ar-
rays to communicate medical risks: overcoming low numeracy. Health Psychology
28, 2 (2009), 210.

[24] Rocio Garcia-Retamero and Edward T Cokely. 2013. Communicating health risks
with visual aids. Current Directions in Psychological Science 22, 5 (2013), 392–399.

[25] Titia Gebuis and Bert Reynvoet. 2012. Continuous visual properties explain neural
responses to nonsymbolic number. Psychophysiology 49, 11 (2012), 1649–1659.

[26] Norman Ginsburg. 1976. Effect of item arrangement on perceived numerosity:
Randomness vs regularity. Perceptual and motor skills 43, 2 (1976), 663–668.

[27] EJ Goldstein, RM Kahn, ML Alpert, BP Ginsberg, FL Greenway, and DM Citron.
1987. Ciprofloxacin versus cinoxacin in therapy of urinary tract infections. A
randomized, double-blind trial. The American journal of medicine 82, 4A (1987),
284–287.

[28] Donna Gresh, Léa A Deleris, Luca Gasparini, and Dylan Evans. 2011. Visualizing
risk. In Proceedings of IEEE Information Visualization Conference. 1–10.

[29] Justin H. Gross. 2016. How to better communicate election forecasts —
in one simple chart. https://www.washingtonpost.com/news/monkey-
cage/wp/2016/11/29/how-to-better-communicate-election-forecasts-in-one-
simple-chart/?noredirect=on

[30] Justin Halberda, Sean F Sires, and Lisa Feigenson. 2006. Multiple spatially over-
lapping sets can be enumerated in parallel. Psychological science 17, 7 (2006),
572–576.

[31] Sarah T Hawley, Brian Zikmund-Fisher, Peter Ubel, Aleksandra Jancovic, Todd
Lucas, and Angela Fagerlin. 2008. The impact of the format of graphical presen-
tation on health-related knowledge and treatment choices. Patient education and
counseling 73, 3 (2008), 448–455.

[32] Jeffrey Heer and Michael Bostock. 2010. Crowdsourcing graphical perception:
using mechanical turk to assess visualization design. In Proceedings of the SIGCHI
conference on human factors in computing systems. 203–212.

[33] Rebecca Hess, Vivianne HM Visschers, and Michael Siegrist. 2011. Risk commu-
nication with pictographs: The role of numeracy and graph processing. Judgment
and Decision Making 6, 3 (2011), 263.

[34] Ulrich Hoffrage, Samuel Lindsey, Ralph Hertwig, and Gerd Gigerenzer. 2000.
Communicating statistical information.

[35] JG Hollands and Brian P Dyre. 2000. Bias in proportion judgments: the cyclical
power model. Psychological review 107, 3 (2000), 500.

[36] Nicole Jardine, Brian D Ondov, Niklas Elmqvist, and Steven Franconeri. 2019.
The perceptual proxies of visual comparison. IEEE transactions on visualization
and computer graphics 26, 1 (2019), 1012–1021.

[37] Yoonkyung Jeong, Susan C Levine, and Janellen Huttenlocher. 2007. The develop-
ment of proportional reasoning: Effect of continuous versus discrete quantities.
Journal of Cognition and Development 8, 2 (2007), 237–256.

[38] Matthew Kay, Tara Kola, Jessica R Hullman, and Sean A Munson. 2016. When
(ish) is my bus? user-centered visualizations of uncertainty in everyday, mobile
predictive systems. In Proceedings of the 2016 chi conference on human factors in
computing systems. 5092–5103.

[39] Helen Kennedy, Rosemary Lucy Hill, William Allen, and Andy Kirk. 2016. Engag-
ing with (big) data visualizations: Factors that affect engagement and resulting
new definitions of effectiveness. First Monday 21, 11 (2016).

[40] Sarah Kliff and Aatish Bhatia. 2022. When They Warn of Rare Disorders,
These Prenatal Tests Are Usually Wrong. https://www.nytimes.com/2022/01/
01/upshot/pregnancy-birth-genetic-testing.html?smtyp=cur&smid=fb-
nytimes&fbclid=IwAR1yOiAgSAB79GLf8CAFWgdmFyLKToMG5-
QnJWJp4ct80mIDGroJxvy3EJw

[41] Elke Kurz-Milcke, Gerd Gigerenzer, and Laura Martignon. 2008. Transparency
in risk communication: graphical and analog tools. In Annals of the New York
Academy of Sciences. Blackwell, 18–28.

[42] Laura Landro. 2017. How to Get Patients to Take More Control of Their Medical
Decisions. https://wellnet.com/broker-resource/news/how-to-get-patients-to-
take-more-control-of-their-medical-decisions/

[43] Tali Leibovich, Naama Katzin, Maayan Harel, and Avishai Henik. 2017. From
“sense of number” to “sense of magnitude”: The role of continuous magnitudes
in numerical cognition. Behavioral and Brain Sciences 40 (2017).

[44] Caitlyn M McColeman, Lane Harrison, Mi Feng, and Steven Franconeri. 2020. No
mark is an island: Precision and category repulsion biases in data reproductions.
IEEE Transactions on Visualization and Computer Graphics 27, 2 (2020), 1063–1072.

[45] Arthur LMiller and Robert A Baker. 1968. The effects of shape, size, heterogeneity,
and instructional set on the judgment of visual number. The American Journal of
Psychology 81, 1 (1968), 83–91.

[46] Clare Milliken. 2020. Understanding Uncertainty. https://magazine.northwestern.
edu/exclusives/understanding-uncertainty?commentsstart2772=10

[47] Wendy Nelson, Valerie F Reyna, Angela Fagerlin, Isaac Lipkus, and Ellen Peters.
2008. Clinical implications of numeracy: theory and practice. Annals of behavioral
medicine 35, 3 (2008), 261–274.

[48] AudeOliva. 2005. Gist of the scene. InNeurobiology of attention. Elsevier, 251–256.
[49] Stefania Pighin, Lucia Savadori, Elisa Barilli, Laura Cremonesi, Maurizio Ferrari,

and Jean-François Bonnefon. 2011. The 1-in-X effect on the subjective assessment
of medical probabilities. Medical Decision Making 31, 5 (2011), 721–729.

[50] Xiaoying Pu and Matthew Kay. 2020. A probabilistic grammar of graphics. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
1–13.

[51] I Qualtrics. 2013. Qualtrics. Provo, UT, USA (2013).
[52] Valerie F Reyna. 2008. A theory of medical decision making and health: fuzzy

trace theory. Medical decision making 28, 6 (2008), 850–865.
[53] Emir H Shuford. 1961. Percentage estimation of proportion as a function of

element type, exposure time, and task. Journal of Experimental Psychology 61, 5
(1961), 430.

[54] Mark Smiciklas. 2012. The power of infographics: Using pictures to communicate
and connect with your audiences. Que Publishing.

[55] Ian Spence. 1990. Visual psychophysics of simple graphical elements. Journal of
Experimental Psychology: Human Perception and Performance 16, 4 (1990), 683.

[56] David Spiegelhalter, Mike Pearson, and Ian Short. 2011. Visualizing uncertainty
about the future. science 333, 6048 (2011), 1393–1400.

[57] Jan Stellamanns, Dana Ruetters, Keshav Dahal, Zita Schillmoeller, and Jutta
Huebner. 2017. Visualizing risks in cancer communication: a systematic review
of computer-supported visual aids. Patient education and counseling 100, 8 (2017),
1421–1431.

[58] Stanley S Stevens. 1957. On the psychophysical law. Psychological review 64, 3
(1957), 153.

[59] Alan R Tait, Terri Voepel-Lewis, Brian J Zikmund-Fisher, and Angela Fagerlin.
2010. Presenting research risks and benefits to parents: does format matter?
Anesthesia and analgesia 111, 3 (2010), 718.

[60] Alberto Testolin, Serena Dolfi, Mathijs Rochus, and Marco Zorzi. 2020. Visual
sense of number vs. sense of magnitude in humans and machines. Scientific
reports 10, 1 (2020), 1–13.

[61] Michael Theil. 2002. The role of translations of verbal into numerical probability
expressions in risk management: a meta-analysis. Journal of Risk Research 5, 2
(2002), 177–186.

[62] Kevin E Tiede, Felicia Ripke, Nicole Degen, andWolfgang Gaissmaier. 2020. When
Does the Incremental Risk Format Aid Informed Medical Decisions? The Role of
Learning, Feedback, and Number of Treatment Options. Medical Decision Making
40, 2 (2020), 212–221.

[63] Sithi Wangeamsermsuk and Arisara Jiamsanguanwong. 2018. The Comparison
of Iconicity Level of Icon Arrays on Risk Perception. Journal of Advances in
Information Technology Vol 9, 4 (2018).

[64] Evan A Wilhelms and Valerie F Reyna. 2013. Effective ways to communicate risk
and benefit. The virtual mentor: VM 15, 1 (2013), 34.

[65] Lei Yuan, Steve Haroz, and Steven Franconeri. 2019. Perceptual proxies for
extracting averages in data visualizations. Psychonomic bulletin & review 26, 2
(2019), 669–676.

[66] Brian J Zikmund-Fisher, Angela Fagerlin, and Peter A Ubel. 2008. Improving
understanding of adjuvant therapy options by using simpler risk graphics. Cancer
113, 12 (2008), 3382–3390.

[67] Brian J Zikmund-Fisher, Peter A Ubel, Dylan M Smith, Holly A Derry, Jennifer B
McClure, Azadeh Stark, Rosemarie K Pitsch, and Angela Fagerlin. 2008. Commu-
nicating side effect risks in a tamoxifen prophylaxis decision aid: the debiasing
influence of pictographs. Patient education and counseling 73, 2 (2008), 209–214.

https://www.washingtonpost.com/news/monkey-cage/wp/2016/11/29/how-to-better-communicate-election-forecasts-in-one-simple-chart/?noredirect=on
https://www.washingtonpost.com/news/monkey-cage/wp/2016/11/29/how-to-better-communicate-election-forecasts-in-one-simple-chart/?noredirect=on
https://www.washingtonpost.com/news/monkey-cage/wp/2016/11/29/how-to-better-communicate-election-forecasts-in-one-simple-chart/?noredirect=on
https://www.nytimes.com/2022/01/01/upshot/pregnancy-birth-genetic-testing.html?smtyp=cur&smid=fb-nytimes&fbclid=IwAR1yOiAgSAB79GLf8CAFWgdmFyLKToMG5-QnJWJp4ct80mIDGroJxvy3EJw
https://www.nytimes.com/2022/01/01/upshot/pregnancy-birth-genetic-testing.html?smtyp=cur&smid=fb-nytimes&fbclid=IwAR1yOiAgSAB79GLf8CAFWgdmFyLKToMG5-QnJWJp4ct80mIDGroJxvy3EJw
https://www.nytimes.com/2022/01/01/upshot/pregnancy-birth-genetic-testing.html?smtyp=cur&smid=fb-nytimes&fbclid=IwAR1yOiAgSAB79GLf8CAFWgdmFyLKToMG5-QnJWJp4ct80mIDGroJxvy3EJw
https://www.nytimes.com/2022/01/01/upshot/pregnancy-birth-genetic-testing.html?smtyp=cur&smid=fb-nytimes&fbclid=IwAR1yOiAgSAB79GLf8CAFWgdmFyLKToMG5-QnJWJp4ct80mIDGroJxvy3EJw
https://wellnet.com/broker-resource/news/how-to-get-patients-to-take-more-control-of-their-medical-decisions/
https://wellnet.com/broker-resource/news/how-to-get-patients-to-take-more-control-of-their-medical-decisions/
https://magazine.northwestern.edu/exclusives/understanding-uncertainty?commentsstart2772=10
https://magazine.northwestern.edu/exclusives/understanding-uncertainty?commentsstart2772=10

	Abstract
	1 Introduction
	2 Related Work
	2.1 Number and Area Perception

	3 Overview of Experiments
	4 Experiment 1 Arrangement Effects
	4.1 Design Motivation
	4.2 Participants
	4.3 Experimental Stimuli and Design
	4.4 Procedure
	4.5 Results
	4.6 Discussion and Motivation for Exp 2 and 3

	5 Experiment 2 Centrality Effects
	5.1 Participants and Procedure
	5.2 Results
	5.3 Discussion

	6 Experiment 3 Random Arrangement
	6.1 Participants, Stimuli, and Procedure
	6.2 Results
	6.3 Discussion

	7 General Discussion and Conclusion
	8 Limitations and Future Directions
	9 Implications for Design
	References

